Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Extending Explainable Boosting Machines to Scientific Image Data (2305.16526v2)

Published 25 May 2023 in cs.CV, cond-mat.quant-gas, and cs.LG

Abstract: As the deployment of computer vision technology becomes increasingly common in science, the need for explanations of the system and its output has become a focus of great concern. Driven by the pressing need for interpretable models in science, we propose the use of Explainable Boosting Machines (EBMs) for scientific image data. Inspired by an important application underpinning the development of quantum technologies, we apply EBMs to cold-atom soliton image data tabularized using Gabor Wavelet Transform-based techniques that preserve the spatial structure of the data. In doing so, we demonstrate the use of EBMs for image data for the first time and show that our approach provides explanations that are consistent with human intuition about the data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A convolutional neural network neutrino event classifier. J. Instrum. 11(09), P09001 (2016). DOI: 10.1088/1748-0221/11/09/p09001
  2. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber. J. Instrum. 12(03), P03011 (2017. DOI: 10.1088/1748- 0221/12/03/p03011
  3. Deep Learning the Morphology of Dark Matter Substructure. Astrophys. J. 893(1), 15 (2020). DOI: 10.3847/1538-4357/ab7925
  4. Convolutional neural networks for direct detection of dark matter. J. Phys. G Nucl. Part. Phys. 47(9), 095201 (2020). DOI: 10.1088/1361-6471/ab8e94
  5. J. P. Zwolak and J. M. Taylor. Colloquium: Advances in automation of quantum dot devices control. Rev. Mod. Phys. 95(1), 011006 (2023). DOI: 10.1103/RevModPhys.95.011006
  6. Framework for atomic-level characterisation of quantum computer arrays by machine learning. npj Comput. Mater. 6(1), 1–8 (2020). DOI: 110.1038/s41524-020-0282-0
  7. S. R. Kalidindi Feature engineering of material structure for AI-based materials knowledge systems. J. Appl. Phys. 128(4), 041103. DOI: 10.1063/5.0011258
  8. Orbital graph convolutional neural network for material property prediction. Phys. Rev. Materials 4(9), 093801 (2020). DOI: 10.1103/PhysRevMaterials.4.093801
  9. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In: Advances in Neural Information Processing Systems. vol. 28. Montreal, Quebec, Canada, (2015).
  10. Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). DOI: 10.1038/s41586-018-0337-2
  11. Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-Day Readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, NSW, Australia, (2015), pp. 1721–1730. DOI: 10.1145/2783258.2788613
  12. Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350 (2015). DOI: 10.1214/15-aoas848
  13. Sanity Checks for Saliency Maps. In: Advances in Neural Information Processing Systems. vol. 31. Montreal, Quebec, Canada, (2018).
  14. SmoothGrad: removing noise by adding noise. arXiv:1706.03825 (2017) . DOI: 10.48550/arxiv.1706.03825
  15. Grad-CAM: Visual Explanations from Deep Networks via Gradient- Based Localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). DOI: 10.1007/s11263- 019-01228-7
  16. Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, Illinois, USA, (2013), pp. 623–631. DOI: 10.1145/2487575.2487579
  17. Dark solitons in BECs dataset 2.0. National Institute of Standards and Technology. 2021. . DOI: 10.18434/MDS2-2363
  18. Dark Solitons in Bose–Einstein Condensates. Phys. Rev. Lett. 83(25), 5198–5201 (1999). DOI: 10.1103/PhysRevLett.83.5198
  19. Generating Solitons by Phase Engineering of a Bose–Einstein Condensate. Science 287(5450), 97–101 (2000). DOI: 10.1126/science.287.5450.97
  20. J. S. Russel. Report of the Committee on Waves. In: Report of the 7th Meeting of the British Association for the Advancement of Science. Liverpool (1837), pp. 417–468.
  21. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973). DOI: 10.1063/1.1654847
  22. A. R. Osborne and T. L. Burch. Internal Solitons in the Andaman Sea. Science 208(4443), 451–460 (1980). DOI: 10.1126/science.208.4443.451
  23. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers. Phys. Rev. Lett. 45(13), 1095–1098 (1980). DOI: 10.1103/PhysRevLett.45.1095
  24. S. Yomosa. Solitary Waves in Large Blood Vessels. J. Phys. Soc. Jpn. 56(2), 506–520 (1987). DOI: 10.1143/JPSJ.56.506
  25. Y. Hashizume. Nonlinear Pressure Waves in a Fluid-Filled Elastic Tube. J. Phys. Soc. Jpn. 54(9), 3305–3312 (1985). DOI: 10.1143/JPSJ.54.3305
  26. M. Lakshmanan. Solitons, tsunamis and oceanographical applications of. In: Mathematics of Complexity and Dynamical Systems. Ed. by R. A. Meyers. Springer, New York, NY. (2012). 1603–1617. DOI: 10.1007/978-0-387-30440-3_509
  27. Slow Magnetosonic Solitons Detected by the Cluster Spacecraft. Phys. Rev. Lett. 90(8), 085002 (2003). DOI: 10.1103/PhysRevLett.90.085002
  28. A. Muñoz Mateo and J. Brand. Stability and dispersion relations of three-dimensional solitary waves in trapped Bose–Einstein condensates. New J. Phys. 17(12), 125013 (2015). DOI: 10.1088/1367-2630/17/12/125013
  29. Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons. Phys. Rev. Research 4(2), 023163 (2022). DOI: 10.1103/ PhysRevResearch.4.023163
  30. Gabor filters-based feature extraction for character recognition. Pattern Recognit. 38(3), 369–379 (2005). DOI: 10.1016/j.patcog.2004.08.004
  31. Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique. Procedia Comput. Sci. 45, 312–321 (2015). DOI: 10.1016/j.procs.2015.03.149
  32. J. Daugman. How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004) . DOI: 10.1109/tcsvt.2003.818350
  33. T. Lindeberg. Feature Detection with Automatic Scale Selection. Int. J. Comput. Vis. 30(2), 79–116 (1998). DOI: 10.1023/a:1008045108935
  34. D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014). DOI: 10.48550/arxiv.1412.6980
  35. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA, (2016), pp. 1135–1144. DOI: 10.1145/2939672.2939778
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.