Extending Explainable Boosting Machines to Scientific Image Data (2305.16526v2)
Abstract: As the deployment of computer vision technology becomes increasingly common in science, the need for explanations of the system and its output has become a focus of great concern. Driven by the pressing need for interpretable models in science, we propose the use of Explainable Boosting Machines (EBMs) for scientific image data. Inspired by an important application underpinning the development of quantum technologies, we apply EBMs to cold-atom soliton image data tabularized using Gabor Wavelet Transform-based techniques that preserve the spatial structure of the data. In doing so, we demonstrate the use of EBMs for image data for the first time and show that our approach provides explanations that are consistent with human intuition about the data.
- A convolutional neural network neutrino event classifier. J. Instrum. 11(09), P09001 (2016). DOI: 10.1088/1748-0221/11/09/p09001
- Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber. J. Instrum. 12(03), P03011 (2017. DOI: 10.1088/1748- 0221/12/03/p03011
- Deep Learning the Morphology of Dark Matter Substructure. Astrophys. J. 893(1), 15 (2020). DOI: 10.3847/1538-4357/ab7925
- Convolutional neural networks for direct detection of dark matter. J. Phys. G Nucl. Part. Phys. 47(9), 095201 (2020). DOI: 10.1088/1361-6471/ab8e94
- J. P. Zwolak and J. M. Taylor. Colloquium: Advances in automation of quantum dot devices control. Rev. Mod. Phys. 95(1), 011006 (2023). DOI: 10.1103/RevModPhys.95.011006
- Framework for atomic-level characterisation of quantum computer arrays by machine learning. npj Comput. Mater. 6(1), 1–8 (2020). DOI: 110.1038/s41524-020-0282-0
- S. R. Kalidindi Feature engineering of material structure for AI-based materials knowledge systems. J. Appl. Phys. 128(4), 041103. DOI: 10.1063/5.0011258
- Orbital graph convolutional neural network for material property prediction. Phys. Rev. Materials 4(9), 093801 (2020). DOI: 10.1103/PhysRevMaterials.4.093801
- Convolutional Networks on Graphs for Learning Molecular Fingerprints. In: Advances in Neural Information Processing Systems. vol. 28. Montreal, Quebec, Canada, (2015).
- Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). DOI: 10.1038/s41586-018-0337-2
- Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-Day Readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, NSW, Australia, (2015), pp. 1721–1730. DOI: 10.1145/2783258.2788613
- Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350 (2015). DOI: 10.1214/15-aoas848
- Sanity Checks for Saliency Maps. In: Advances in Neural Information Processing Systems. vol. 31. Montreal, Quebec, Canada, (2018).
- SmoothGrad: removing noise by adding noise. arXiv:1706.03825 (2017) . DOI: 10.48550/arxiv.1706.03825
- Grad-CAM: Visual Explanations from Deep Networks via Gradient- Based Localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). DOI: 10.1007/s11263- 019-01228-7
- Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, Illinois, USA, (2013), pp. 623–631. DOI: 10.1145/2487575.2487579
- Dark solitons in BECs dataset 2.0. National Institute of Standards and Technology. 2021. . DOI: 10.18434/MDS2-2363
- Dark Solitons in Bose–Einstein Condensates. Phys. Rev. Lett. 83(25), 5198–5201 (1999). DOI: 10.1103/PhysRevLett.83.5198
- Generating Solitons by Phase Engineering of a Bose–Einstein Condensate. Science 287(5450), 97–101 (2000). DOI: 10.1126/science.287.5450.97
- J. S. Russel. Report of the Committee on Waves. In: Report of the 7th Meeting of the British Association for the Advancement of Science. Liverpool (1837), pp. 417–468.
- Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973). DOI: 10.1063/1.1654847
- A. R. Osborne and T. L. Burch. Internal Solitons in the Andaman Sea. Science 208(4443), 451–460 (1980). DOI: 10.1126/science.208.4443.451
- Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers. Phys. Rev. Lett. 45(13), 1095–1098 (1980). DOI: 10.1103/PhysRevLett.45.1095
- S. Yomosa. Solitary Waves in Large Blood Vessels. J. Phys. Soc. Jpn. 56(2), 506–520 (1987). DOI: 10.1143/JPSJ.56.506
- Y. Hashizume. Nonlinear Pressure Waves in a Fluid-Filled Elastic Tube. J. Phys. Soc. Jpn. 54(9), 3305–3312 (1985). DOI: 10.1143/JPSJ.54.3305
- M. Lakshmanan. Solitons, tsunamis and oceanographical applications of. In: Mathematics of Complexity and Dynamical Systems. Ed. by R. A. Meyers. Springer, New York, NY. (2012). 1603–1617. DOI: 10.1007/978-0-387-30440-3_509
- Slow Magnetosonic Solitons Detected by the Cluster Spacecraft. Phys. Rev. Lett. 90(8), 085002 (2003). DOI: 10.1103/PhysRevLett.90.085002
- A. Muñoz Mateo and J. Brand. Stability and dispersion relations of three-dimensional solitary waves in trapped Bose–Einstein condensates. New J. Phys. 17(12), 125013 (2015). DOI: 10.1088/1367-2630/17/12/125013
- Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons. Phys. Rev. Research 4(2), 023163 (2022). DOI: 10.1103/ PhysRevResearch.4.023163
- Gabor filters-based feature extraction for character recognition. Pattern Recognit. 38(3), 369–379 (2005). DOI: 10.1016/j.patcog.2004.08.004
- Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique. Procedia Comput. Sci. 45, 312–321 (2015). DOI: 10.1016/j.procs.2015.03.149
- J. Daugman. How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004) . DOI: 10.1109/tcsvt.2003.818350
- T. Lindeberg. Feature Detection with Automatic Scale Selection. Int. J. Comput. Vis. 30(2), 79–116 (1998). DOI: 10.1023/a:1008045108935
- D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014). DOI: 10.48550/arxiv.1412.6980
- "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA, (2016), pp. 1135–1144. DOI: 10.1145/2939672.2939778
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.