Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-Based Models with Applications to Speech and Language Processing (2403.10961v1)

Published 16 Mar 2024 in cs.LG, cs.CL, cs.SD, and eess.AS

Abstract: Energy-Based Models (EBMs) are an important class of probabilistic models, also known as random fields and undirected graphical models. EBMs are un-normalized and thus radically different from other popular self-normalized probabilistic models such as hidden Markov models (HMMs), autoregressive models, generative adversarial nets (GANs) and variational auto-encoders (VAEs). Over the past years, EBMs have attracted increasing interest not only from the core machine learning community, but also from application domains such as speech, vision, NLP and so on, due to significant theoretical and algorithmic progress. The sequential nature of speech and language also presents special challenges and needs a different treatment from processing fix-dimensional data (e.g., images). Therefore, the purpose of this monograph is to present a systematic introduction to energy-based models, including both algorithmic progress and applications in speech and language processing. First, the basics of EBMs are introduced, including classic models, recent models parameterized by neural networks, sampling methods, and various learning methods from the classic learning algorithms to the most advanced ones. Then, the application of EBMs in three different scenarios is presented, i.e., for modeling marginal, conditional and joint distributions, respectively. 1) EBMs for sequential data with applications in LLMing, where the main focus is on the marginal distribution of a sequence itself; 2) EBMs for modeling conditional distributions of target sequences given observation sequences, with applications in speech recognition, sequence labeling and text generation; 3) EBMs for modeling joint distributions of both sequences of observations and targets, and their applications in semi-supervised learning and calibrated natural language understanding.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Zhijian Ou (58 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.