Model independent analysis of femtoscopic correlation functions: An application to the $D_{s0}^*(2317)$
Abstract: We face the inverse problem of obtaining the interaction between coupled channels from the correlation functions of these channels. We apply the method to the interaction of the $D0 K+$, $D+ K0$, and $D+_s \eta$ channels, from where the $D*_{s0}(2317)$ state emerges. We use synthetic data extracted from an interaction model based on the local hidden gauge approach and find that the inverse problem can determine the existence of a bound state of the system with a precision of about 20 MeV. At the same time, we can determine the isospin nature of the bound state and its compositeness in terms of the channels. Furthermore, we evaluate the scattering length and effective range of all three channels, as well as the couplings of the bound state found to all the components. Lastly, the size parameter of the source function, $R$, which in principle should be a magnitude provided by the experimental teams, can be obtained from a fit to the data with relatively high accuracy. These findings show the value of the correlation function to learn about the meson-meson interaction for systems which are difficult to access in other present facilities.
- L. Adamczyk et al. (STAR), Phys. Rev. Lett. 114, 022301 (2015), arXiv:1408.4360 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Lett. B 774, 64 (2017), arXiv:1705.04929 [nucl-ex] .
- J. Adam et al. (STAR), Phys. Lett. B 790, 490 (2019), arXiv:1808.02511 [hep-ex] .
- S. Acharya et al. (ALICE), Phys. Rev. C 99, 024001 (2019a), arXiv:1805.12455 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Rev. Lett. 123, 112002 (2019b), arXiv:1904.12198 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Lett. B 797, 134822 (2019c), arXiv:1905.07209 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Lett. B 805, 135419 (2020a), arXiv:1910.14407 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Rev. Lett. 124, 092301 (2020b), arXiv:1905.13470 [nucl-ex] .
- A. Collaboration et al. (ALICE), Nature 588, 232 (2020), [Erratum: Nature 590, E13 (2021)], arXiv:2005.11495 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Lett. B 822, 136708 (2021a), arXiv:2105.05683 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Rev. Lett. 127, 172301 (2021b), arXiv:2105.05578 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Rev. D 106, 052010 (2022), arXiv:2201.05352 [nucl-ex] .
- J. Haidenbauer, Nucl. Phys. A 981, 1 (2019), arXiv:1808.05049 [hep-ph] .
- LHCb,  (2022), arXiv:2212.02717 [hep-ex] .
- M. Ablikim et al. (BESIII), Phys. Rev. D 104, 071101 (2021), arXiv:2106.13536 [hep-ex] .
- E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003), arXiv:hep-ph/0305035 .
- Y.-Q. Chen and X.-Q. Li, Phys. Rev. Lett. 93, 232001 (2004), arXiv:hep-ph/0407062 .
- E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39 (2004), arXiv:hep-ph/0307133 .
- R. Aaij et al. (LHCb), Nature Commun. 13, 3351 (2022), arXiv:2109.01056 [hep-ex] .
- B. Aubert et al. (BaBar), Phys. Rev. Lett. 90, 242001 (2003), arXiv:hep-ex/0304021 .
- ALICE,  (2022), arXiv:2211.02491 [physics.ins-det] .
- M. Harada and K. Yamawaki, Phys. Rept. 381, 1 (2003), arXiv:hep-ph/0302103 .
- U. G. Meissner, Phys. Rept. 161, 213 (1988).
- S. E. Koonin, Phys. Lett. B 70, 43 (1977).
- B. Efron and R. Tibshirani, Statist. Sci. 57, 54 (1986).
- T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013), arXiv:1310.1176 [hep-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.