Papers
Topics
Authors
Recent
2000 character limit reached

Model independent analysis of femtoscopic correlation functions: An application to the $D_{s0}^*(2317)$

Published 25 May 2023 in hep-ph and nucl-th | (2305.16431v2)

Abstract: We face the inverse problem of obtaining the interaction between coupled channels from the correlation functions of these channels. We apply the method to the interaction of the $D0 K+$, $D+ K0$, and $D+_s \eta$ channels, from where the $D*_{s0}(2317)$ state emerges. We use synthetic data extracted from an interaction model based on the local hidden gauge approach and find that the inverse problem can determine the existence of a bound state of the system with a precision of about 20 MeV. At the same time, we can determine the isospin nature of the bound state and its compositeness in terms of the channels. Furthermore, we evaluate the scattering length and effective range of all three channels, as well as the couplings of the bound state found to all the components. Lastly, the size parameter of the source function, $R$, which in principle should be a magnitude provided by the experimental teams, can be obtained from a fit to the data with relatively high accuracy. These findings show the value of the correlation function to learn about the meson-meson interaction for systems which are difficult to access in other present facilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. L. Adamczyk et al. (STAR), Phys. Rev. Lett. 114, 022301 (2015), arXiv:1408.4360 [nucl-ex] .
  2. S. Acharya et al. (ALICE), Phys. Lett. B 774, 64 (2017), arXiv:1705.04929 [nucl-ex] .
  3. J. Adam et al. (STAR), Phys. Lett. B 790, 490 (2019), arXiv:1808.02511 [hep-ex] .
  4. S. Acharya et al. (ALICE), Phys. Rev. C 99, 024001 (2019a), arXiv:1805.12455 [nucl-ex] .
  5. S. Acharya et al. (ALICE), Phys. Rev. Lett. 123, 112002 (2019b), arXiv:1904.12198 [nucl-ex] .
  6. S. Acharya et al. (ALICE), Phys. Lett. B 797, 134822 (2019c), arXiv:1905.07209 [nucl-ex] .
  7. S. Acharya et al. (ALICE), Phys. Lett. B 805, 135419 (2020a), arXiv:1910.14407 [nucl-ex] .
  8. S. Acharya et al. (ALICE), Phys. Rev. Lett. 124, 092301 (2020b), arXiv:1905.13470 [nucl-ex] .
  9. A. Collaboration et al. (ALICE), Nature 588, 232 (2020), [Erratum: Nature 590, E13 (2021)], arXiv:2005.11495 [nucl-ex] .
  10. S. Acharya et al. (ALICE), Phys. Lett. B 822, 136708 (2021a), arXiv:2105.05683 [nucl-ex] .
  11. S. Acharya et al. (ALICE), Phys. Rev. Lett. 127, 172301 (2021b), arXiv:2105.05578 [nucl-ex] .
  12. S. Acharya et al. (ALICE), Phys. Rev. D 106, 052010 (2022), arXiv:2201.05352 [nucl-ex] .
  13. J. Haidenbauer, Nucl. Phys. A 981, 1 (2019), arXiv:1808.05049 [hep-ph] .
  14. LHCb,   (2022), arXiv:2212.02717 [hep-ex] .
  15. M. Ablikim et al. (BESIII), Phys. Rev. D 104, 071101 (2021), arXiv:2106.13536 [hep-ex] .
  16. E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003), arXiv:hep-ph/0305035 .
  17. Y.-Q. Chen and X.-Q. Li, Phys. Rev. Lett. 93, 232001 (2004), arXiv:hep-ph/0407062 .
  18. E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39 (2004), arXiv:hep-ph/0307133 .
  19. R. Aaij et al. (LHCb), Nature Commun. 13, 3351 (2022), arXiv:2109.01056 [hep-ex] .
  20. B. Aubert et al. (BaBar), Phys. Rev. Lett. 90, 242001 (2003), arXiv:hep-ex/0304021 .
  21. ALICE,   (2022), arXiv:2211.02491 [physics.ins-det] .
  22. M. Harada and K. Yamawaki, Phys. Rept. 381, 1 (2003), arXiv:hep-ph/0302103 .
  23. U. G. Meissner, Phys. Rept. 161, 213 (1988).
  24. S. E. Koonin, Phys. Lett. B 70, 43 (1977).
  25. B. Efron and R. Tibshirani, Statist. Sci. 57, 54 (1986).
  26. T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013), arXiv:1310.1176 [hep-ph] .
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.