2000 character limit reached
ADLER -- An efficient Hessian-based strategy for adaptive learning rate
Published 25 May 2023 in cs.LG and math.OC | (2305.16396v1)
Abstract: We derive a sound positive semi-definite approximation of the Hessian of deep models for which Hessian-vector products are easily computable. This enables us to provide an adaptive SGD learning rate strategy based on the minimization of the local quadratic approximation, which requires just twice the computation of a single SGD run, but performs comparably with grid search on SGD learning rates on different model architectures (CNN with and without residual connections) on classification tasks. We also compare the novel approximation with the Gauss-Newton approximation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.