Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Ordered and Binary Speaker Embedding (2305.16043v1)

Published 25 May 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Modern speaker recognition systems represent utterances by embedding vectors. Conventional embedding vectors are dense and non-structural. In this paper, we propose an ordered binary embedding approach that sorts the dimensions of the embedding vector via a nested dropout and converts the sorted vectors to binary codes via Bernoulli sampling. The resultant ordered binary codes offer some important merits such as hierarchical clustering, reduced memory usage, and fast retrieval. These merits were empirically verified by comprehensive experiments on a speaker identification task with the VoxCeleb and CN-Celeb datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.