Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Matrix Autoregressive Model with Vector Time Series Covariates for Spatio-Temporal Data (2305.15671v3)

Published 25 May 2023 in stat.ME

Abstract: We develop a new methodology for forecasting matrix-valued time series with historical matrix data and auxiliary vector time series data. We focus on a time series of matrices defined on a static 2-D spatial grid and an auxiliary time series of non-spatial vectors. The proposed model, Matrix AutoRegression with Auxiliary Covariates (MARAC), contains an autoregressive component for the historical matrix predictors and an additive component that maps the auxiliary vector predictors to a matrix response via tensor-vector product. The autoregressive component adopts a bi-linear transformation framework following Chen et al. (2021), significantly reducing the number of parameters. The auxiliary component posits that the tensor coefficient, which maps non-spatial predictors to a spatial response, contains slices of spatially smooth matrix coefficients that are discrete evaluations of smooth functions from a Reproducible Kernel Hilbert Space (RKHS). We propose to estimate the model parameters under a penalized maximum likelihood estimation framework coupled with an alternating minimization algorithm. We establish the joint asymptotics of the autoregressive and tensor parameters under fixed and high-dimensional regimes. Extensive simulations and a geophysical application for forecasting the global Total Electron Content (TEC) are conducted to validate the performance of MARAC.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.