Papers
Topics
Authors
Recent
2000 character limit reached

Sample-Efficient Learning for a Surrogate Model of Three-Phase Distribution System

Published 24 May 2023 in eess.SY and cs.SY | (2305.14799v2)

Abstract: A surrogate model that accurately predicts distribution system voltages is crucial for reliable smart grid planning and operation. This letter proposes a fixed-point data-driven surrogate modeling method that employs a limited dataset to learn the power-voltage relationship of an unbalanced three-phase distribution system. The proposed surrogate model is designed using a fixed-point load-flow equation, and the stochastic gradient descent method with an automatic differentiation technique is employed to update the parameters of the surrogate model using complex power and voltage samples. Numerical examples in IEEE 13-bus, 37-bus, and 123-bus systems demonstrate that the proposed surrogate model can outperform surrogate models based on the deep neural network and Gaussian process regarding prediction accuracy and sample efficiency

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.