An Asynchronous Wireless Network for Capturing Event-Driven Data from Large Populations of Autonomous Sensors (2305.12293v1)
Abstract: We introduce a wireless RF network concept for capturing sparse event-driven data from large populations of spatially distributed autonomous microsensors, possibly numbered in the thousands. Each sensor is assumed to be a microchip capable of event detection in transforming time-varying inputs to spike trains. Inspired by brain information processing, we have developed a spectrally efficient, low-error rate asynchronous networking concept based on a code-division multiple access method. We characterize the network performance of several dozen submillimeter-size silicon microchips experimentally, complemented by larger scale in silico simulations. A comparison is made between different implementations of on-chip clocks. Testing the notion that spike-based wireless communication is naturally matched with downstream sensor population analysis by neuromorphic computing techniques, we then deploy a spiking neural network (SNN) machine learning model to decode data from eight thousand spiking neurons in the primate cortex for accurate prediction of hand movement in a cursor control task.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.