Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Black holes and modular forms in string theory (2305.11732v2)

Published 19 May 2023 in hep-th and math.NT

Abstract: The study of black holes in string theory has led to the discovery of deep and surprising connections between black holes and modular forms -- which are two classical, a priori unrelated, subjects. This article explains the main physical and mathematical ideas behind these connections. It is known from the pioneering work of J.Bekenstein and S.Hawking in the 1970s that black holes have thermodynamic entropy, and should therefore be made up of a collection of microscopic quantum states. Superstring theory provides a framework wherein we can associate a number of microscopic states that make up the quantum-statistical system underlying a black hole, thus explaining their thermodynamic behavior from a more fundamental point of view. %The above-mentioned connections arise from the observation that, i The basic connection to modular forms arises from the observation that, in the simplest superstring-theoretic construction, the generating function of the number of microscopic states is a modular form. In one direction, modular symmetry acts as a powerful guide to the calculation of quantum-gravitational effects on the black hole entropy. In the other direction, the connection has led to the discovery of surprising relations between Ramanujan's mock modular forms and a class of string-theoretic black holes, thus providing an infinite number of new examples of mock modular forms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (111)
  1. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleD3-instantons, Mock Theta Series and Twistors D3-instantons, Mock Theta Series and Twistors.\BBCQ \APACjournalVolNumPagesJHEP04002. {APACrefDOI} \doi10.1007/JHEP04(2013)002 \PrintBackRefs\CurrentBib
  2. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleBlack holes and higher depth mock modular forms Black holes and higher depth mock modular forms.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.3742549–625. {APACrefDOI} \doi10.1007/s00220-019-03609-y \PrintBackRefs\CurrentBib
  3. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleLocalization and real Jacobi forms Localization and real Jacobi forms.\BBCQ \APACjournalVolNumPagesJHEP04119. {APACrefDOI} \doi10.1007/JHEP04(2014)119 \PrintBackRefs\CurrentBib
  4. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA Twisted Non-compact Elliptic Genus A Twisted Non-compact Elliptic Genus.\BBCQ \APACjournalVolNumPagesJHEP03067. {APACrefDOI} \doi10.1007/JHEP03(2011)067 \PrintBackRefs\CurrentBib
  5. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleThe u-plane integral, mock modularity and enumerative geometry The u-plane integral, mock modularity and enumerative geometry.\BBCQ \APACjournalVolNumPagesLett. Math. Phys.112230. {APACrefDOI} \doi10.1007/s11005-022-01520-7 \PrintBackRefs\CurrentBib
  6. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleLogarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function.\BBCQ \APACjournalVolNumPagesJHEP03147. {APACrefDOI} \doi10.1007/JHEP03(2011)147 \PrintBackRefs\CurrentBib
  7. \APACrefYearMonthDay1973. \BBOQ\APACrefatitleThe Four laws of black hole mechanics The Four laws of black hole mechanics.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.31161–170. {APACrefDOI} \doi10.1007/BF01645742 \PrintBackRefs\CurrentBib
  8. \APACinsertmetastarBekenstein:1973ur{APACrefauthors}Bekenstein, J\BPBID.  \APACrefYearMonthDay1973. \BBOQ\APACrefatitleBlack holes and entropy Black holes and entropy.\BBCQ \APACjournalVolNumPagesPhys. Rev. D72333–2346. {APACrefDOI} \doi10.1103/PhysRevD.7.2333 \PrintBackRefs\CurrentBib
  9. \APACrefYearMonthDay20187. \BBOQ\APACrefatitleBlack holes and class groups Black holes and class groups.\BBCQ \PrintBackRefs\CurrentBib
  10. \APACinsertmetastarBogomolny:1975de{APACrefauthors}Bogomolny, E\BPBIB.  \APACrefYearMonthDay1976. \BBOQ\APACrefatitleStability of Classical Solutions Stability of Classical Solutions.\BBCQ \APACjournalVolNumPagesSov. J. Nucl. Phys.24449. \PrintBackRefs\CurrentBib
  11. \APACrefYearMonthDay2020. \BBOQ\APACrefatitle1/8-BPS Couplings and Exceptional Automorphic Functions 1/8-BPS Couplings and Exceptional Automorphic Functions.\BBCQ \APACjournalVolNumPagesSciPost Phys.84054. {APACrefDOI} \doi10.21468/SciPostPhys.8.4.054 \PrintBackRefs\CurrentBib
  12. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleVertical D4–D2–D0 Bound States on K3 Fibrations and Modularity Vertical D4–D2–D0 Bound States on K3 Fibrations and Modularity.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.35031069–1121. {APACrefDOI} \doi10.1007/s00220-016-2772-y \PrintBackRefs\CurrentBib
  13. \APACrefYear2017. \APACrefbtitleHarmonic Maass Forms and Mock Modular Forms: Theory and Applications Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. \APACaddressPublisherAmerican Mathematical Society. {APACrefURL} https://bookstore.ams.org/coll-64 \PrintBackRefs\CurrentBib
  14. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleAn extension of the Hardy-Ramanujan circle method and applications to partitions without sequences An extension of the Hardy-Ramanujan circle method and applications to partitions without sequences.\BBCQ \APACjournalVolNumPagesAmerican Journal of Mathematics133(4)1151–1178. {APACrefDOI} \doi10.1353/ajm.2011.0025 \PrintBackRefs\CurrentBib
  15. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleOn the positivity of black hole degeneracies in string theory On the positivity of black hole degeneracies in string theory.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor Phys.0715–56. {APACrefDOI} \doi10.4310/CNTP.2013.v7.n1.a2 \PrintBackRefs\CurrentBib
  16. \APACrefYear2008. \APACrefbtitleThe 1-2-3 of Modular Forms The 1-2-3 of modular forms. \APACaddressPublisherSpringer Berlin, Heidelberg. {APACrefURL} https://link.springer.com/book/10.1007/978-3-540-74119-0 \PrintBackRefs\CurrentBib
  17. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleA One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two A One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two.\BBCQ \APACjournalVolNumPagesJHEP10202. {APACrefDOI} \doi10.1007/JHEP10(2020)202 \PrintBackRefs\CurrentBib
  18. \APACrefYearMonthDay202112. \BBOQ\APACrefatitleRademacher expansion of a Siegel modular form for 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 counting Rademacher expansion of a Siegel modular form for 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 counting.\BBCQ \PrintBackRefs\CurrentBib
  19. \APACinsertmetastarCardy:1986ie{APACrefauthors}Cardy, J\BPBIL.  \APACrefYearMonthDay1986. \BBOQ\APACrefatitleOperator Content of Two-Dimensional Conformally Invariant Theories Operator Content of Two-Dimensional Conformally Invariant Theories.\BBCQ \APACjournalVolNumPagesNucl. Phys. B270186–204. {APACrefDOI} \doi10.1016/0550-3213(86)90552-3 \PrintBackRefs\CurrentBib
  20. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleProperties of dyons in 𝒩𝒩\mathcal{N}caligraphic_N = 4 theories at small charges Properties of dyons in 𝒩𝒩\mathcal{N}caligraphic_N = 4 theories at small charges.\BBCQ \APACjournalVolNumPagesJHEP05005. {APACrefDOI} \doi10.1007/JHEP05(2019)005 \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleHorizon states and the sign of their index in 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 dyons Horizon states and the sign of their index in 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 dyons.\BBCQ \APACjournalVolNumPagesJHEP03106. {APACrefDOI} \doi10.1007/JHEP03(2021)106 \PrintBackRefs\CurrentBib
  22. \APACrefYearMonthDay2019. \BBOQ\APACrefatitle3d Modularity 3d Modularity.\BBCQ \APACjournalVolNumPagesJHEP10010. {APACrefDOI} \doi10.1007/JHEP10(2019)010 \PrintBackRefs\CurrentBib
  23. \APACrefYearMonthDay20137. \BBOQ\APACrefatitleUmbral Moonshine and the Niemeier Lattices Umbral Moonshine and the Niemeier Lattices.\BBCQ \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleUmbral Moonshine Umbral Moonshine.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.08101–242. {APACrefDOI} \doi10.4310/CNTP.2014.v8.n2.a1 \PrintBackRefs\CurrentBib
  25. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleUmbral Moonshine and K3 Surfaces Umbral Moonshine and K3 Surfaces.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.3391221–261. {APACrefDOI} \doi10.1007/s00220-015-2398-5 \PrintBackRefs\CurrentBib
  26. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleDyonic black hole degeneracies in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 string theory from Dabholkar-Harvey degeneracies Dyonic black hole degeneracies in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 string theory from Dabholkar-Harvey degeneracies.\BBCQ \APACjournalVolNumPagesJHEP10184. {APACrefDOI} \doi10.1007/JHEP10(2020)184 \PrintBackRefs\CurrentBib
  27. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleExact and asymptotic degeneracies of small black holes Exact and asymptotic degeneracies of small black holes.\BBCQ \APACjournalVolNumPagesJHEP08021. {APACrefDOI} \doi10.1088/1126-6708/2005/08/021 \PrintBackRefs\CurrentBib
  28. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleQuantum black holes, localization and the topological string Quantum black holes, localization and the topological string.\BBCQ \APACjournalVolNumPagesJHEP06019. {APACrefDOI} \doi10.1007/JHEP06(2011)019 \PrintBackRefs\CurrentBib
  29. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleLocalization & Exact Holography Localization & Exact Holography.\BBCQ \APACjournalVolNumPagesJHEP04062. {APACrefDOI} \doi10.1007/JHEP04(2013)062 \PrintBackRefs\CurrentBib
  30. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleNonperturbative black hole entropy and Kloosterman sums Nonperturbative black hole entropy and Kloosterman sums.\BBCQ \APACjournalVolNumPagesJHEP03074. {APACrefDOI} \doi10.1007/JHEP03(2015)074 \PrintBackRefs\CurrentBib
  31. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleSupersymmetric Index from Black Hole Entropy Supersymmetric Index from Black Hole Entropy.\BBCQ \APACjournalVolNumPagesJHEP04034. {APACrefDOI} \doi10.1007/JHEP04(2011)034 \PrintBackRefs\CurrentBib
  32. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleNo entropy enigmas for N=4 dyons No entropy enigmas for N=4 dyons.\BBCQ \APACjournalVolNumPagesJHEP06007. {APACrefDOI} \doi10.1007/JHEP06(2010)007 \PrintBackRefs\CurrentBib
  33. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleAPS η𝜂\etaitalic_η-invariant, path integrals, and mock modularity APS η𝜂\etaitalic_η-invariant, path integrals, and mock modularity.\BBCQ \APACjournalVolNumPagesJHEP11080. {APACrefDOI} \doi10.1007/JHEP11(2019)080 \PrintBackRefs\CurrentBib
  34. \APACrefYearMonthDay20128. \BBOQ\APACrefatitleQuantum Black Holes, Wall Crossing, and Mock Modular Forms Quantum Black Holes, Wall Crossing, and Mock Modular Forms.\BBCQ \PrintBackRefs\CurrentBib
  35. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleDuality and Mock Modularity Duality and Mock Modularity.\BBCQ \APACjournalVolNumPagesSciPost Phys.95072. {APACrefDOI} \doi10.21468/SciPostPhys.9.5.072 \PrintBackRefs\CurrentBib
  36. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleSplit states, entropy enigmas, holes and halos Split states, entropy enigmas, holes and halos.\BBCQ \APACjournalVolNumPagesJHEP11129. {APACrefDOI} \doi10.1007/JHEP11(2011)129 \PrintBackRefs\CurrentBib
  37. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBRST quantization and equivariant cohomology: localization with asymptotic boundaries BRST quantization and equivariant cohomology: localization with asymptotic boundaries.\BBCQ \APACjournalVolNumPagesJHEP09084. {APACrefDOI} \doi10.1007/JHEP09(2018)084 \PrintBackRefs\CurrentBib
  38. \APACrefYearMonthDay20228. \BBOQ\APACrefatitleLectures on modular forms and strings Lectures on modular forms and strings.\BBCQ \PrintBackRefs\CurrentBib
  39. \APACrefYearMonthDay20005. \BBOQ\APACrefatitleA Black hole Farey tail A Black hole Farey tail.\BBCQ \PrintBackRefs\CurrentBib
  40. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleNotes on the K3 Surface and the Mathieu group M24subscript𝑀24M_{24}italic_M start_POSTSUBSCRIPT 24 end_POSTSUBSCRIPT Notes on the K3 Surface and the Mathieu group M24subscript𝑀24M_{24}italic_M start_POSTSUBSCRIPT 24 end_POSTSUBSCRIPT.\BBCQ \APACjournalVolNumPagesExper. Math.2091–96. {APACrefDOI} \doi10.1080/10586458.2011.544585 \PrintBackRefs\CurrentBib
  41. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleNon-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory Non-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory.\BBCQ \APACjournalVolNumPagesJHEP03107. {APACrefDOI} \doi10.1007/JHEP03(2011)107 \PrintBackRefs\CurrentBib
  42. \APACrefYearMonthDay1988. \BBOQ\APACrefatitleCharacter Formulas for the N=4𝑁4N=4italic_N = 4 Superconformal Algebra Character Formulas for the N=4𝑁4N=4italic_N = 4 Superconformal Algebra.\BBCQ \APACjournalVolNumPagesPhys. Lett. B200315. {APACrefDOI} \doi10.1016/0370-2693(88)90778-2 \PrintBackRefs\CurrentBib
  43. \APACrefYear2013. \APACrefbtitleThe 1-2-3 of Modular Forms The 1-2-3 of modular forms. \APACaddressPublisherBirkhäuser Boston, MA. {APACrefURL} https://link.springer.com/book/10.1007/978-1-4684-9162-3 \PrintBackRefs\CurrentBib
  44. \APACrefYearMonthDay1995. \BBOQ\APACrefatitleN=2 extremal black holes N=2 extremal black holes.\BBCQ \APACjournalVolNumPagesPhys. Rev. D52R5412–R5416. {APACrefDOI} \doi10.1103/PhysRevD.52.R5412 \PrintBackRefs\CurrentBib
  45. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMixed Rademacher and BPS Black Holes Mixed Rademacher and BPS Black Holes.\BBCQ \APACjournalVolNumPagesJHEP07094. {APACrefDOI} \doi10.1007/JHEP07(2017)094 \PrintBackRefs\CurrentBib
  46. \APACrefYear2018. \APACrefbtitleEisenstein Series and Automorphic Representations: With Applications in String Theory Eisenstein Series and Automorphic Representations: With Applications in String Theory. \APACaddressPublisherCambridge Univ. Pr. {APACrefURL} https://www.cambridge.org/core/books/eisenstein-series-and-automorphic-representations/A815C7DFFF757DE89269DE0C36B6FBB8 \PrintBackRefs\CurrentBib
  47. \APACrefYearMonthDay2012. \BBOQ\APACrefatitleSymmetries of K3 sigma models Symmetries of K3 sigma models.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.61–50. {APACrefDOI} \doi10.4310/CNTP.2012.v6.n1.a1 \PrintBackRefs\CurrentBib
  48. \APACrefYearMonthDay2007. \BBOQ\APACrefatitleThe M5-Brane Elliptic Genus: Modularity and BPS States The M5-Brane Elliptic Genus: Modularity and BPS States.\BBCQ \APACjournalVolNumPagesJHEP08070. {APACrefDOI} \doi10.1088/1126-6708/2007/08/070 \PrintBackRefs\CurrentBib
  49. \APACrefYearMonthDay202111. \BBOQ\APACrefatitleKnots, perturbative series and quantum modularity Knots, perturbative series and quantum modularity.\BBCQ \PrintBackRefs\CurrentBib
  50. \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePositivity of discrete information for CHL black holes Positivity of discrete information for CHL black holes.\BBCQ \APACjournalVolNumPagesNucl. Phys. B987116095. {APACrefDOI} \doi10.1016/j.nuclphysb.2023.116095 \PrintBackRefs\CurrentBib
  51. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleEisenstein series for higher-rank groups and string theory amplitudes Eisenstein series for higher-rank groups and string theory amplitudes.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.4551–596. {APACrefDOI} \doi10.4310/CNTP.2010.v4.n3.a2 \PrintBackRefs\CurrentBib
  52. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleAutomorphic properties of low energy string amplitudes in various dimensions Automorphic properties of low energy string amplitudes in various dimensions.\BBCQ \APACjournalVolNumPagesPhys. Rev. D81086008. {APACrefDOI} \doi10.1103/PhysRevD.81.086008 \PrintBackRefs\CurrentBib
  53. \APACrefYear1988. \APACrefbtitleSuperstring Theory. Vol. 1: Introduction Superstring Theory. Vol. 1: Introduction. \APACaddressPublisherCambridge Univ. Pr. \PrintBackRefs\CurrentBib
  54. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleDuality and higher derivative terms in M theory Duality and higher derivative terms in M theory.\BBCQ \APACjournalVolNumPagesJHEP01093. {APACrefDOI} \doi10.1088/1126-6708/2006/01/093 \PrintBackRefs\CurrentBib
  55. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBPS spectra and 3-manifold invariants BPS spectra and 3-manifold invariants.\BBCQ \APACjournalVolNumPagesJ. Knot Theor. Ramifications29022040003. {APACrefDOI} \doi10.1142/S0218216520400039 \PrintBackRefs\CurrentBib
  56. \APACrefYearMonthDay20175. \BBOQ\APACrefatitleSquashed toric sigma models and mock modular forms Squashed toric sigma models and mock modular forms.\BBCQ {APACrefDOI} \doi10.1007/s00220-017-3069-5 \PrintBackRefs\CurrentBib
  57. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleF-Theory, Spinning Black Holes and Multi-string Branches F-Theory, Spinning Black Holes and Multi-string Branches.\BBCQ \APACjournalVolNumPagesJHEP01009. {APACrefDOI} \doi10.1007/JHEP01(2016)009 \PrintBackRefs\CurrentBib
  58. \APACrefYearMonthDay1918. \BBOQ\APACrefatitleAsymptotic formulae in combinatory analysis Asymptotic formulae in combinatory analysis.\BBCQ \APACjournalVolNumPagesProceedings of the London Mathematical Society, Second Series.1775–115. \PrintBackRefs\CurrentBib
  59. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleElliptic genera of ALE and ALF manifolds from gauged linear sigma models Elliptic genera of ALE and ALF manifolds from gauged linear sigma models.\BBCQ \APACjournalVolNumPagesJHEP02110. {APACrefDOI} \doi10.1007/JHEP02(2015)110 \PrintBackRefs\CurrentBib
  60. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleMoonshine in Fivebrane Spacetimes Moonshine in Fivebrane Spacetimes.\BBCQ \APACjournalVolNumPagesJHEP01146. {APACrefDOI} \doi10.1007/JHEP01(2014)146 \PrintBackRefs\CurrentBib
  61. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine.\BBCQ \APACjournalVolNumPagesJHEP05126. {APACrefDOI} \doi10.1007/JHEP05(2015)126 \PrintBackRefs\CurrentBib
  62. \APACinsertmetastarHawking:1975vcx{APACrefauthors}Hawking, S\BPBIW.  \APACrefYearMonthDay1975. \BBOQ\APACrefatitleParticle Creation by Black Holes Particle Creation by Black Holes.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.43199–220. \APACrefnote[Erratum: Commun.Math.Phys. 46, 206 (1976)] {APACrefDOI} \doi10.1007/BF02345020 \PrintBackRefs\CurrentBib
  63. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleThe statistical mechanics of near-BPS black holes The statistical mechanics of near-BPS black holes.\BBCQ \APACjournalVolNumPagesJ. Phys. A551014004. {APACrefDOI} \doi10.1088/1751-8121/ac3be9 \PrintBackRefs\CurrentBib
  64. \APACrefYearMonthDay1997. \BBOQ\APACrefatitleA Correspondence principle for black holes and strings A Correspondence principle for black holes and strings.\BBCQ \APACjournalVolNumPagesPhys. Rev. D556189–6197. {APACrefDOI} \doi10.1103/PhysRevD.55.6189 \PrintBackRefs\CurrentBib
  65. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleTopological String on elliptic CY 3-folds and the ring of Jacobi forms Topological String on elliptic CY 3-folds and the ring of Jacobi forms.\BBCQ \APACjournalVolNumPagesJHEP10125. {APACrefDOI} \doi10.1007/JHEP10(2015)125 \PrintBackRefs\CurrentBib
  66. \APACrefYearMonthDay20229. \BBOQ\APACrefatitleBlack hole microstate counting from the gravitational path integral Black hole microstate counting from the gravitational path integral.\BBCQ \PrintBackRefs\CurrentBib
  67. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleSome properties of Noether charge and a proposal for dynamical black hole entropy Some properties of Noether charge and a proposal for dynamical black hole entropy.\BBCQ \APACjournalVolNumPagesPhys. Rev. D50846–864. {APACrefDOI} \doi10.1103/PhysRevD.50.846 \PrintBackRefs\CurrentBib
  68. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTwisting and localization in supergravity: equivariant cohomology of BPS black holes Twisting and localization in supergravity: equivariant cohomology of BPS black holes.\BBCQ \APACjournalVolNumPagesJHEP03140. {APACrefDOI} \doi10.1007/JHEP03(2019)140 \PrintBackRefs\CurrentBib
  69. \APACinsertmetastarKiritsis:1997gu{APACrefauthors}Kiritsis, E.  \APACrefYearMonthDay1998. \BBOQ\APACrefatitleIntroduction to nonperturbative string theory Introduction to nonperturbative string theory.\BBCQ \APACjournalVolNumPagesAIP Conf. Proc.4191265–308. {APACrefDOI} \doi10.1063/1.54695 \PrintBackRefs\CurrentBib
  70. \APACrefYearMonthDay20125. \BBOQ\APACrefatitleQuantum geometry of elliptic Calabi-Yau manifolds Quantum geometry of elliptic Calabi-Yau manifolds.\BBCQ \PrintBackRefs\CurrentBib
  71. \APACinsertmetastarKorpas:2022tij{APACrefauthors}Korpas, G.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMock modularity and surface defects in topological 𝒩𝒩\mathcal{N}caligraphic_N =2 super Yang-Mills theory Mock modularity and surface defects in topological 𝒩𝒩\mathcal{N}caligraphic_N =2 super Yang-Mills theory.\BBCQ \APACjournalVolNumPagesPhys. Rev. D1052026025. {APACrefDOI} \doi10.1103/PhysRevD.105.026025 \PrintBackRefs\CurrentBib
  72. \APACrefYearMonthDay201910. \BBOQ\APACrefatitleMocking the u𝑢uitalic_u-plane integral Mocking the u𝑢uitalic_u-plane integral.\BBCQ \PrintBackRefs\CurrentBib
  73. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleSquashed Toric Manifolds and Higher Depth Mock Modular Forms Squashed Toric Manifolds and Higher Depth Mock Modular Forms.\BBCQ \APACjournalVolNumPagesJHEP02064. {APACrefDOI} \doi10.1007/JHEP02(2019)064 \PrintBackRefs\CurrentBib
  74. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleType IIB at eight derivatives: insights from Superstrings, Superfields and Superparticles Type IIB at eight derivatives: insights from Superstrings, Superfields and Superparticles.\BBCQ \APACjournalVolNumPagesJHEP08267. {APACrefDOI} \doi10.1007/JHEP08(2022)267 \PrintBackRefs\CurrentBib
  75. \APACrefYearMonthDay1999. \BBOQ\APACrefatitleCorrections to macroscopic supersymmetric black hole entropy Corrections to macroscopic supersymmetric black hole entropy.\BBCQ \APACjournalVolNumPagesPhys. Lett. B451309–316. {APACrefDOI} \doi10.1016/S0370-2693(99)00227-0 \PrintBackRefs\CurrentBib
  76. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleArithmetic of decay walls through continued fractions: a new exact dyon counting solution in 𝒩𝒩\mathcal{N}caligraphic_N = 4 CHL models Arithmetic of decay walls through continued fractions: a new exact dyon counting solution in 𝒩𝒩\mathcal{N}caligraphic_N = 4 CHL models.\BBCQ \APACjournalVolNumPagesJHEP03154. {APACrefDOI} \doi10.1007/JHEP03(2021)154 \PrintBackRefs\CurrentBib
  77. \APACrefYearMonthDay1997. \BBOQ\APACrefatitleBlack hole entropy in M theory Black hole entropy in M theory.\BBCQ \APACjournalVolNumPagesJHEP12002. {APACrefDOI} \doi10.1088/1126-6708/1997/12/002 \PrintBackRefs\CurrentBib
  78. \APACinsertmetastarManschot:2010sxc{APACrefauthors}Manschot, J.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStability and duality in N=2 supergravity Stability and duality in N=2 supergravity.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.299651–676. {APACrefDOI} \doi10.1007/s00220-010-1104-x \PrintBackRefs\CurrentBib
  79. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleA Modern Farey Tail A Modern Farey Tail.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.4103–159. {APACrefDOI} \doi10.4310/CNTP.2010.v4.n1.a3 \PrintBackRefs\CurrentBib
  80. \APACrefYearMonthDay20214. \BBOQ\APACrefatitleTopological correlators of S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ), 𝒩=2*𝒩superscript2\mathcal{N}=2^{*}caligraphic_N = 2 start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT SYM on four-manifolds Topological correlators of S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ), 𝒩=2*𝒩superscript2\mathcal{N}=2^{*}caligraphic_N = 2 start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT SYM on four-manifolds.\BBCQ \PrintBackRefs\CurrentBib
  81. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleWall Crossing from Boltzmann Black Hole Halos Wall Crossing from Boltzmann Black Hole Halos.\BBCQ \APACjournalVolNumPagesJHEP07059. {APACrefDOI} \doi10.1007/JHEP07(2011)059 \PrintBackRefs\CurrentBib
  82. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSolvable models of quantum black holes: a review on Jackiw–Teitelboim gravity Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity.\BBCQ \APACjournalVolNumPagesLiving Rev. Rel.2614. {APACrefDOI} \doi10.1007/s41114-023-00046-1 \PrintBackRefs\CurrentBib
  83. \APACinsertmetastarMoore:1998pn{APACrefauthors}Moore, G\BPBIW.  \APACrefYearMonthDay19987. \BBOQ\APACrefatitleArithmetic and attractors Arithmetic and attractors.\BBCQ \PrintBackRefs\CurrentBib
  84. \APACinsertmetastarMurthy:2013mya{APACrefauthors}Murthy, S.  \APACrefYearMonthDay2014. \BBOQ\APACrefatitleA holomorphic anomaly in the elliptic genus A holomorphic anomaly in the elliptic genus.\BBCQ \APACjournalVolNumPagesJHEP06165. {APACrefDOI} \doi10.1007/JHEP06(2014)165 \PrintBackRefs\CurrentBib
  85. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleMock modularity from black hole scattering states Mock modularity from black hole scattering states.\BBCQ \APACjournalVolNumPagesJHEP12119. {APACrefDOI} \doi10.1007/JHEP12(2018)119 \PrintBackRefs\CurrentBib
  86. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleSingle-centered black hole microstate degeneracies from instantons in supergravity Single-centered black hole microstate degeneracies from instantons in supergravity.\BBCQ \APACjournalVolNumPagesJHEP04052. {APACrefDOI} \doi10.1007/JHEP04(2016)052 \PrintBackRefs\CurrentBib
  87. \APACinsertmetastarNazaroglu:2016lmr{APACrefauthors}Nazaroglu, C.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitler𝑟ritalic_r-Tuple Error Functions and Indefinite Theta Series of Higher-Depth r𝑟ritalic_r-Tuple Error Functions and Indefinite Theta Series of Higher-Depth.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.12581–608. {APACrefDOI} \doi10.4310/CNTP.2018.v12.n3.a4 \PrintBackRefs\CurrentBib
  88. \APACrefYearMonthDay2004. \BBOQ\APACrefatitleBlack hole attractors and the topological string Black hole attractors and the topological string.\BBCQ \APACjournalVolNumPagesPhys. Rev. D70106007. {APACrefDOI} \doi10.1103/PhysRevD.70.106007 \PrintBackRefs\CurrentBib
  89. \APACinsertmetastarPioline:2010kb{APACrefauthors}Pioline, B.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleR**4 couplings and automorphic unipotent representations R**4 couplings and automorphic unipotent representations.\BBCQ \APACjournalVolNumPagesJHEP03116. {APACrefDOI} \doi10.1007/JHEP03(2010)116 \PrintBackRefs\CurrentBib
  90. \APACrefYearMonthDay1975. \BBOQ\APACrefatitleAn Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon An Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon.\BBCQ \APACjournalVolNumPagesPhys. Rev. Lett.35760–762. {APACrefDOI} \doi10.1103/PhysRevLett.35.760 \PrintBackRefs\CurrentBib
  91. \APACinsertmetastarRademacher{APACrefauthors}Rademacher, H.  \APACrefYearMonthDay1937. \BBOQ\APACrefatitleOn the partition function p(n) On the partition function p(n).\BBCQ \APACjournalVolNumPagesProceedings of the London Mathematical Society, Second Series.43 (4)241–254. \PrintBackRefs\CurrentBib
  92. \APACinsertmetastarSchutz:1985jx{APACrefauthors}Schutz, B\BPBIF.  \APACrefYear2022. \APACrefbtitleA First Course in General Relativity, 3rd Edition A first course in general relativity, 3rd edition. \APACaddressPublisherCambridge Univ. Pr. {APACrefURL} https://www.cambridge.org/gb/academic/subjects/physics/cosmology-relativity-and-gravitation/first-course-general-relativity-3rd-edition?format=HB \PrintBackRefs\CurrentBib
  93. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleElectric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory.\BBCQ \APACjournalVolNumPagesNucl. Phys. B42619–52. \APACrefnote[Erratum: Nucl.Phys.B 430, 485–486 (1994)] {APACrefDOI} \doi10.1016/0550-3213(94)90124-4 \PrintBackRefs\CurrentBib
  94. \APACinsertmetastarSen:1994fa{APACrefauthors}Sen, A.  \APACrefYearMonthDay1994. \BBOQ\APACrefatitleStrong - weak coupling duality in four-dimensional string theory Strong - weak coupling duality in four-dimensional string theory.\BBCQ \APACjournalVolNumPagesInt. J. Mod. Phys. A93707–3750. {APACrefDOI} \doi10.1142/S0217751X94001497 \PrintBackRefs\CurrentBib
  95. \APACinsertmetastarSen:1995in{APACrefauthors}Sen, A.  \APACrefYearMonthDay1995. \BBOQ\APACrefatitleExtremal black holes and elementary string states Extremal black holes and elementary string states.\BBCQ \APACjournalVolNumPagesMod. Phys. Lett. A102081–2094. {APACrefDOI} \doi10.1142/S0217732395002234 \PrintBackRefs\CurrentBib
  96. \APACinsertmetastarSen:2007qy{APACrefauthors}Sen, A.  \APACrefYearMonthDay2008\BCnt1. \BBOQ\APACrefatitleBlack Hole Entropy Function, Attractors and Precision Counting of Microstates Black Hole Entropy Function, Attractors and Precision Counting of Microstates.\BBCQ \APACjournalVolNumPagesGen. Rel. Grav.402249–2431. {APACrefDOI} \doi10.1007/s10714-008-0626-4 \PrintBackRefs\CurrentBib
  97. \APACinsertmetastarSen:2008yk{APACrefauthors}Sen, A.  \APACrefYearMonthDay2008\BCnt2. \BBOQ\APACrefatitleEntropy Function and AdS(2) / CFT(1) Correspondence Entropy Function and AdS(2) / CFT(1) Correspondence.\BBCQ \APACjournalVolNumPagesJHEP11075. {APACrefDOI} \doi10.1088/1126-6708/2008/11/075 \PrintBackRefs\CurrentBib
  98. \APACinsertmetastarSen:2009vz{APACrefauthors}Sen, A.  \APACrefYearMonthDay2009\BCnt1. \BBOQ\APACrefatitleArithmetic of Quantum Entropy Function Arithmetic of Quantum Entropy Function.\BBCQ \APACjournalVolNumPagesJHEP08068. {APACrefDOI} \doi10.1088/1126-6708/2009/08/068 \PrintBackRefs\CurrentBib
  99. \APACinsertmetastarSen:2008vm{APACrefauthors}Sen, A.  \APACrefYearMonthDay2009\BCnt2. \BBOQ\APACrefatitleQuantum Entropy Function from AdS(2)/CFT(1) Correspondence Quantum Entropy Function from AdS(2)/CFT(1) Correspondence.\BBCQ \APACjournalVolNumPagesInt. J. Mod. Phys. A244225–4244. {APACrefDOI} \doi10.1142/S0217751X09045893 \PrintBackRefs\CurrentBib
  100. \APACinsertmetastarSen:2011ktd{APACrefauthors}Sen, A.  \APACrefYearMonthDay2011. \BBOQ\APACrefatitleHow Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms? How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms?\BBCQ \APACjournalVolNumPagesGen. Rel. Grav.432171–2183. {APACrefDOI} \doi10.1007/s10714-011-1175-9 \PrintBackRefs\CurrentBib
  101. \APACrefYearMonthDay1996. \BBOQ\APACrefatitleMicroscopic origin of the Bekenstein-Hawking entropy Microscopic origin of the Bekenstein-Hawking entropy.\BBCQ \APACjournalVolNumPagesPhys. Lett. B37999–104. {APACrefDOI} \doi10.1016/0370-2693(96)00345-0 \PrintBackRefs\CurrentBib
  102. \APACinsertmetastarSusskind:1993ws{APACrefauthors}Susskind, L.  \APACrefYearMonthDay199310. \BBOQ\APACrefatitleSome speculations about black hole entropy in string theory Some speculations about black hole entropy in string theory.\BBCQ \APACjournalVolNumPages118–131. \PrintBackRefs\CurrentBib
  103. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleBlack hole entropy in canonical quantum gravity and superstring theory Black hole entropy in canonical quantum gravity and superstring theory.\BBCQ \APACjournalVolNumPagesPhys. Rev. D502700–2711. {APACrefDOI} \doi10.1103/PhysRevD.50.2700 \PrintBackRefs\CurrentBib
  104. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleSymmetry-surfing the moduli space of Kummer K3s Symmetry-surfing the moduli space of Kummer K3s.\BBCQ \APACjournalVolNumPagesProc. Symp. Pure Math.90129–154. {APACrefDOI} \doi10.1090/pspum/090/01522 \PrintBackRefs\CurrentBib
  105. \APACinsertmetastartHooft:1990fkf{APACrefauthors}’t Hooft, G.  \APACrefYearMonthDay1990. \BBOQ\APACrefatitleThe black hole interpretation of string theory The black hole interpretation of string theory.\BBCQ \APACjournalVolNumPagesNucl. Phys. B335138–154. {APACrefDOI} \doi10.1016/0550-3213(90)90174-C \PrintBackRefs\CurrentBib
  106. \APACinsertmetastarTroost:2010ud{APACrefauthors}Troost, J.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleThe non-compact elliptic genus: mock or modular The non-compact elliptic genus: mock or modular.\BBCQ \APACjournalVolNumPagesJHEP06104. {APACrefDOI} \doi10.1007/JHEP06(2010)104 \PrintBackRefs\CurrentBib
  107. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleA Strong coupling test of S duality A Strong coupling test of S duality.\BBCQ \APACjournalVolNumPagesNucl. Phys. B4313–77. {APACrefDOI} \doi10.1016/0550-3213(94)90097-3 \PrintBackRefs\CurrentBib
  108. \APACinsertmetastarWald:1993nt{APACrefauthors}Wald, R\BPBIM.  \APACrefYearMonthDay1993. \BBOQ\APACrefatitleBlack hole entropy is the Noether charge Black hole entropy is the Noether charge.\BBCQ \APACjournalVolNumPagesPhys. Rev. D488R3427–R3431. {APACrefDOI} \doi10.1103/PhysRevD.48.R3427 \PrintBackRefs\CurrentBib
  109. \APACinsertmetastarWitten:1982df{APACrefauthors}Witten, E.  \APACrefYearMonthDay1982. \BBOQ\APACrefatitleConstraints on Supersymmetry Breaking Constraints on Supersymmetry Breaking.\BBCQ \APACjournalVolNumPagesNucl. Phys. B202253. {APACrefDOI} \doi10.1016/0550-3213(82)90071-2 \PrintBackRefs\CurrentBib
  110. \APACinsertmetastarZagBourbaki{APACrefauthors}Zagier, D.  \APACrefYearMonthDay2009. \BBOQ\APACrefatitleRamanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono], Séminaire Bourbaki, 60ème année, 2007-2008, n 986, Astérisque 326 (2009), Soc. Math. de France, 143-164 Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono], Séminaire Bourbaki, 60ème année, 2007-2008, n 986, Astérisque 326 (2009), Soc. Math. de France, 143-164.\BBCQ \PrintBackRefs\CurrentBib
  111. \APACinsertmetastarzwegers2008mock{APACrefauthors}Zwegers, S.  \APACrefYearMonthDay2008. \APACrefbtitleMock Theta Functions, Utrecht PhD thesis. Mock Theta Functions, Utrecht PhD thesis. \PrintBackRefs\CurrentBib
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube