Black holes and modular forms in string theory (2305.11732v2)
Abstract: The study of black holes in string theory has led to the discovery of deep and surprising connections between black holes and modular forms -- which are two classical, a priori unrelated, subjects. This article explains the main physical and mathematical ideas behind these connections. It is known from the pioneering work of J.Bekenstein and S.Hawking in the 1970s that black holes have thermodynamic entropy, and should therefore be made up of a collection of microscopic quantum states. Superstring theory provides a framework wherein we can associate a number of microscopic states that make up the quantum-statistical system underlying a black hole, thus explaining their thermodynamic behavior from a more fundamental point of view. %The above-mentioned connections arise from the observation that, i The basic connection to modular forms arises from the observation that, in the simplest superstring-theoretic construction, the generating function of the number of microscopic states is a modular form. In one direction, modular symmetry acts as a powerful guide to the calculation of quantum-gravitational effects on the black hole entropy. In the other direction, the connection has led to the discovery of surprising relations between Ramanujan's mock modular forms and a class of string-theoretic black holes, thus providing an infinite number of new examples of mock modular forms.
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleD3-instantons, Mock Theta Series and Twistors D3-instantons, Mock Theta Series and Twistors.\BBCQ \APACjournalVolNumPagesJHEP04002. {APACrefDOI} \doi10.1007/JHEP04(2013)002 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleBlack holes and higher depth mock modular forms Black holes and higher depth mock modular forms.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.3742549–625. {APACrefDOI} \doi10.1007/s00220-019-03609-y \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleLocalization and real Jacobi forms Localization and real Jacobi forms.\BBCQ \APACjournalVolNumPagesJHEP04119. {APACrefDOI} \doi10.1007/JHEP04(2014)119 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA Twisted Non-compact Elliptic Genus A Twisted Non-compact Elliptic Genus.\BBCQ \APACjournalVolNumPagesJHEP03067. {APACrefDOI} \doi10.1007/JHEP03(2011)067 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleThe u-plane integral, mock modularity and enumerative geometry The u-plane integral, mock modularity and enumerative geometry.\BBCQ \APACjournalVolNumPagesLett. Math. Phys.112230. {APACrefDOI} \doi10.1007/s11005-022-01520-7 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleLogarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function.\BBCQ \APACjournalVolNumPagesJHEP03147. {APACrefDOI} \doi10.1007/JHEP03(2011)147 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1973. \BBOQ\APACrefatitleThe Four laws of black hole mechanics The Four laws of black hole mechanics.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.31161–170. {APACrefDOI} \doi10.1007/BF01645742 \PrintBackRefs\CurrentBib
- \APACinsertmetastarBekenstein:1973ur{APACrefauthors}Bekenstein, J\BPBID. \APACrefYearMonthDay1973. \BBOQ\APACrefatitleBlack holes and entropy Black holes and entropy.\BBCQ \APACjournalVolNumPagesPhys. Rev. D72333–2346. {APACrefDOI} \doi10.1103/PhysRevD.7.2333 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20187. \BBOQ\APACrefatitleBlack holes and class groups Black holes and class groups.\BBCQ \PrintBackRefs\CurrentBib
- \APACinsertmetastarBogomolny:1975de{APACrefauthors}Bogomolny, E\BPBIB. \APACrefYearMonthDay1976. \BBOQ\APACrefatitleStability of Classical Solutions Stability of Classical Solutions.\BBCQ \APACjournalVolNumPagesSov. J. Nucl. Phys.24449. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitle1/8-BPS Couplings and Exceptional Automorphic Functions 1/8-BPS Couplings and Exceptional Automorphic Functions.\BBCQ \APACjournalVolNumPagesSciPost Phys.84054. {APACrefDOI} \doi10.21468/SciPostPhys.8.4.054 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleVertical D4–D2–D0 Bound States on K3 Fibrations and Modularity Vertical D4–D2–D0 Bound States on K3 Fibrations and Modularity.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.35031069–1121. {APACrefDOI} \doi10.1007/s00220-016-2772-y \PrintBackRefs\CurrentBib
- \APACrefYear2017. \APACrefbtitleHarmonic Maass Forms and Mock Modular Forms: Theory and Applications Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. \APACaddressPublisherAmerican Mathematical Society. {APACrefURL} https://bookstore.ams.org/coll-64 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleAn extension of the Hardy-Ramanujan circle method and applications to partitions without sequences An extension of the Hardy-Ramanujan circle method and applications to partitions without sequences.\BBCQ \APACjournalVolNumPagesAmerican Journal of Mathematics133(4)1151–1178. {APACrefDOI} \doi10.1353/ajm.2011.0025 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleOn the positivity of black hole degeneracies in string theory On the positivity of black hole degeneracies in string theory.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor Phys.0715–56. {APACrefDOI} \doi10.4310/CNTP.2013.v7.n1.a2 \PrintBackRefs\CurrentBib
- \APACrefYear2008. \APACrefbtitleThe 1-2-3 of Modular Forms The 1-2-3 of modular forms. \APACaddressPublisherSpringer Berlin, Heidelberg. {APACrefURL} https://link.springer.com/book/10.1007/978-3-540-74119-0 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleA One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two A One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two.\BBCQ \APACjournalVolNumPagesJHEP10202. {APACrefDOI} \doi10.1007/JHEP10(2020)202 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay202112. \BBOQ\APACrefatitleRademacher expansion of a Siegel modular form for 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 counting Rademacher expansion of a Siegel modular form for 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 counting.\BBCQ \PrintBackRefs\CurrentBib
- \APACinsertmetastarCardy:1986ie{APACrefauthors}Cardy, J\BPBIL. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleOperator Content of Two-Dimensional Conformally Invariant Theories Operator Content of Two-Dimensional Conformally Invariant Theories.\BBCQ \APACjournalVolNumPagesNucl. Phys. B270186–204. {APACrefDOI} \doi10.1016/0550-3213(86)90552-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleProperties of dyons in 𝒩𝒩\mathcal{N}caligraphic_N = 4 theories at small charges Properties of dyons in 𝒩𝒩\mathcal{N}caligraphic_N = 4 theories at small charges.\BBCQ \APACjournalVolNumPagesJHEP05005. {APACrefDOI} \doi10.1007/JHEP05(2019)005 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleHorizon states and the sign of their index in 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 dyons Horizon states and the sign of their index in 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 dyons.\BBCQ \APACjournalVolNumPagesJHEP03106. {APACrefDOI} \doi10.1007/JHEP03(2021)106 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitle3d Modularity 3d Modularity.\BBCQ \APACjournalVolNumPagesJHEP10010. {APACrefDOI} \doi10.1007/JHEP10(2019)010 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20137. \BBOQ\APACrefatitleUmbral Moonshine and the Niemeier Lattices Umbral Moonshine and the Niemeier Lattices.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleUmbral Moonshine Umbral Moonshine.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.08101–242. {APACrefDOI} \doi10.4310/CNTP.2014.v8.n2.a1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleUmbral Moonshine and K3 Surfaces Umbral Moonshine and K3 Surfaces.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.3391221–261. {APACrefDOI} \doi10.1007/s00220-015-2398-5 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleDyonic black hole degeneracies in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 string theory from Dabholkar-Harvey degeneracies Dyonic black hole degeneracies in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 string theory from Dabholkar-Harvey degeneracies.\BBCQ \APACjournalVolNumPagesJHEP10184. {APACrefDOI} \doi10.1007/JHEP10(2020)184 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleExact and asymptotic degeneracies of small black holes Exact and asymptotic degeneracies of small black holes.\BBCQ \APACjournalVolNumPagesJHEP08021. {APACrefDOI} \doi10.1088/1126-6708/2005/08/021 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleQuantum black holes, localization and the topological string Quantum black holes, localization and the topological string.\BBCQ \APACjournalVolNumPagesJHEP06019. {APACrefDOI} \doi10.1007/JHEP06(2011)019 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleLocalization & Exact Holography Localization & Exact Holography.\BBCQ \APACjournalVolNumPagesJHEP04062. {APACrefDOI} \doi10.1007/JHEP04(2013)062 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleNonperturbative black hole entropy and Kloosterman sums Nonperturbative black hole entropy and Kloosterman sums.\BBCQ \APACjournalVolNumPagesJHEP03074. {APACrefDOI} \doi10.1007/JHEP03(2015)074 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleSupersymmetric Index from Black Hole Entropy Supersymmetric Index from Black Hole Entropy.\BBCQ \APACjournalVolNumPagesJHEP04034. {APACrefDOI} \doi10.1007/JHEP04(2011)034 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleNo entropy enigmas for N=4 dyons No entropy enigmas for N=4 dyons.\BBCQ \APACjournalVolNumPagesJHEP06007. {APACrefDOI} \doi10.1007/JHEP06(2010)007 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleAPS η𝜂\etaitalic_η-invariant, path integrals, and mock modularity APS η𝜂\etaitalic_η-invariant, path integrals, and mock modularity.\BBCQ \APACjournalVolNumPagesJHEP11080. {APACrefDOI} \doi10.1007/JHEP11(2019)080 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20128. \BBOQ\APACrefatitleQuantum Black Holes, Wall Crossing, and Mock Modular Forms Quantum Black Holes, Wall Crossing, and Mock Modular Forms.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleDuality and Mock Modularity Duality and Mock Modularity.\BBCQ \APACjournalVolNumPagesSciPost Phys.95072. {APACrefDOI} \doi10.21468/SciPostPhys.9.5.072 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleSplit states, entropy enigmas, holes and halos Split states, entropy enigmas, holes and halos.\BBCQ \APACjournalVolNumPagesJHEP11129. {APACrefDOI} \doi10.1007/JHEP11(2011)129 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBRST quantization and equivariant cohomology: localization with asymptotic boundaries BRST quantization and equivariant cohomology: localization with asymptotic boundaries.\BBCQ \APACjournalVolNumPagesJHEP09084. {APACrefDOI} \doi10.1007/JHEP09(2018)084 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20228. \BBOQ\APACrefatitleLectures on modular forms and strings Lectures on modular forms and strings.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20005. \BBOQ\APACrefatitleA Black hole Farey tail A Black hole Farey tail.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleNotes on the K3 Surface and the Mathieu group M24subscript𝑀24M_{24}italic_M start_POSTSUBSCRIPT 24 end_POSTSUBSCRIPT Notes on the K3 Surface and the Mathieu group M24subscript𝑀24M_{24}italic_M start_POSTSUBSCRIPT 24 end_POSTSUBSCRIPT.\BBCQ \APACjournalVolNumPagesExper. Math.2091–96. {APACrefDOI} \doi10.1080/10586458.2011.544585 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleNon-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory Non-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory.\BBCQ \APACjournalVolNumPagesJHEP03107. {APACrefDOI} \doi10.1007/JHEP03(2011)107 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1988. \BBOQ\APACrefatitleCharacter Formulas for the N=4𝑁4N=4italic_N = 4 Superconformal Algebra Character Formulas for the N=4𝑁4N=4italic_N = 4 Superconformal Algebra.\BBCQ \APACjournalVolNumPagesPhys. Lett. B200315. {APACrefDOI} \doi10.1016/0370-2693(88)90778-2 \PrintBackRefs\CurrentBib
- \APACrefYear2013. \APACrefbtitleThe 1-2-3 of Modular Forms The 1-2-3 of modular forms. \APACaddressPublisherBirkhäuser Boston, MA. {APACrefURL} https://link.springer.com/book/10.1007/978-1-4684-9162-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1995. \BBOQ\APACrefatitleN=2 extremal black holes N=2 extremal black holes.\BBCQ \APACjournalVolNumPagesPhys. Rev. D52R5412–R5416. {APACrefDOI} \doi10.1103/PhysRevD.52.R5412 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMixed Rademacher and BPS Black Holes Mixed Rademacher and BPS Black Holes.\BBCQ \APACjournalVolNumPagesJHEP07094. {APACrefDOI} \doi10.1007/JHEP07(2017)094 \PrintBackRefs\CurrentBib
- \APACrefYear2018. \APACrefbtitleEisenstein Series and Automorphic Representations: With Applications in String Theory Eisenstein Series and Automorphic Representations: With Applications in String Theory. \APACaddressPublisherCambridge Univ. Pr. {APACrefURL} https://www.cambridge.org/core/books/eisenstein-series-and-automorphic-representations/A815C7DFFF757DE89269DE0C36B6FBB8 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleSymmetries of K3 sigma models Symmetries of K3 sigma models.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.61–50. {APACrefDOI} \doi10.4310/CNTP.2012.v6.n1.a1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleThe M5-Brane Elliptic Genus: Modularity and BPS States The M5-Brane Elliptic Genus: Modularity and BPS States.\BBCQ \APACjournalVolNumPagesJHEP08070. {APACrefDOI} \doi10.1088/1126-6708/2007/08/070 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay202111. \BBOQ\APACrefatitleKnots, perturbative series and quantum modularity Knots, perturbative series and quantum modularity.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePositivity of discrete information for CHL black holes Positivity of discrete information for CHL black holes.\BBCQ \APACjournalVolNumPagesNucl. Phys. B987116095. {APACrefDOI} \doi10.1016/j.nuclphysb.2023.116095 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleEisenstein series for higher-rank groups and string theory amplitudes Eisenstein series for higher-rank groups and string theory amplitudes.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.4551–596. {APACrefDOI} \doi10.4310/CNTP.2010.v4.n3.a2 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleAutomorphic properties of low energy string amplitudes in various dimensions Automorphic properties of low energy string amplitudes in various dimensions.\BBCQ \APACjournalVolNumPagesPhys. Rev. D81086008. {APACrefDOI} \doi10.1103/PhysRevD.81.086008 \PrintBackRefs\CurrentBib
- \APACrefYear1988. \APACrefbtitleSuperstring Theory. Vol. 1: Introduction Superstring Theory. Vol. 1: Introduction. \APACaddressPublisherCambridge Univ. Pr. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleDuality and higher derivative terms in M theory Duality and higher derivative terms in M theory.\BBCQ \APACjournalVolNumPagesJHEP01093. {APACrefDOI} \doi10.1088/1126-6708/2006/01/093 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBPS spectra and 3-manifold invariants BPS spectra and 3-manifold invariants.\BBCQ \APACjournalVolNumPagesJ. Knot Theor. Ramifications29022040003. {APACrefDOI} \doi10.1142/S0218216520400039 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20175. \BBOQ\APACrefatitleSquashed toric sigma models and mock modular forms Squashed toric sigma models and mock modular forms.\BBCQ {APACrefDOI} \doi10.1007/s00220-017-3069-5 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleF-Theory, Spinning Black Holes and Multi-string Branches F-Theory, Spinning Black Holes and Multi-string Branches.\BBCQ \APACjournalVolNumPagesJHEP01009. {APACrefDOI} \doi10.1007/JHEP01(2016)009 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1918. \BBOQ\APACrefatitleAsymptotic formulae in combinatory analysis Asymptotic formulae in combinatory analysis.\BBCQ \APACjournalVolNumPagesProceedings of the London Mathematical Society, Second Series.1775–115. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleElliptic genera of ALE and ALF manifolds from gauged linear sigma models Elliptic genera of ALE and ALF manifolds from gauged linear sigma models.\BBCQ \APACjournalVolNumPagesJHEP02110. {APACrefDOI} \doi10.1007/JHEP02(2015)110 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleMoonshine in Fivebrane Spacetimes Moonshine in Fivebrane Spacetimes.\BBCQ \APACjournalVolNumPagesJHEP01146. {APACrefDOI} \doi10.1007/JHEP01(2014)146 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine.\BBCQ \APACjournalVolNumPagesJHEP05126. {APACrefDOI} \doi10.1007/JHEP05(2015)126 \PrintBackRefs\CurrentBib
- \APACinsertmetastarHawking:1975vcx{APACrefauthors}Hawking, S\BPBIW. \APACrefYearMonthDay1975. \BBOQ\APACrefatitleParticle Creation by Black Holes Particle Creation by Black Holes.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.43199–220. \APACrefnote[Erratum: Commun.Math.Phys. 46, 206 (1976)] {APACrefDOI} \doi10.1007/BF02345020 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleThe statistical mechanics of near-BPS black holes The statistical mechanics of near-BPS black holes.\BBCQ \APACjournalVolNumPagesJ. Phys. A551014004. {APACrefDOI} \doi10.1088/1751-8121/ac3be9 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1997. \BBOQ\APACrefatitleA Correspondence principle for black holes and strings A Correspondence principle for black holes and strings.\BBCQ \APACjournalVolNumPagesPhys. Rev. D556189–6197. {APACrefDOI} \doi10.1103/PhysRevD.55.6189 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleTopological String on elliptic CY 3-folds and the ring of Jacobi forms Topological String on elliptic CY 3-folds and the ring of Jacobi forms.\BBCQ \APACjournalVolNumPagesJHEP10125. {APACrefDOI} \doi10.1007/JHEP10(2015)125 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20229. \BBOQ\APACrefatitleBlack hole microstate counting from the gravitational path integral Black hole microstate counting from the gravitational path integral.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleSome properties of Noether charge and a proposal for dynamical black hole entropy Some properties of Noether charge and a proposal for dynamical black hole entropy.\BBCQ \APACjournalVolNumPagesPhys. Rev. D50846–864. {APACrefDOI} \doi10.1103/PhysRevD.50.846 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTwisting and localization in supergravity: equivariant cohomology of BPS black holes Twisting and localization in supergravity: equivariant cohomology of BPS black holes.\BBCQ \APACjournalVolNumPagesJHEP03140. {APACrefDOI} \doi10.1007/JHEP03(2019)140 \PrintBackRefs\CurrentBib
- \APACinsertmetastarKiritsis:1997gu{APACrefauthors}Kiritsis, E. \APACrefYearMonthDay1998. \BBOQ\APACrefatitleIntroduction to nonperturbative string theory Introduction to nonperturbative string theory.\BBCQ \APACjournalVolNumPagesAIP Conf. Proc.4191265–308. {APACrefDOI} \doi10.1063/1.54695 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20125. \BBOQ\APACrefatitleQuantum geometry of elliptic Calabi-Yau manifolds Quantum geometry of elliptic Calabi-Yau manifolds.\BBCQ \PrintBackRefs\CurrentBib
- \APACinsertmetastarKorpas:2022tij{APACrefauthors}Korpas, G. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMock modularity and surface defects in topological 𝒩𝒩\mathcal{N}caligraphic_N =2 super Yang-Mills theory Mock modularity and surface defects in topological 𝒩𝒩\mathcal{N}caligraphic_N =2 super Yang-Mills theory.\BBCQ \APACjournalVolNumPagesPhys. Rev. D1052026025. {APACrefDOI} \doi10.1103/PhysRevD.105.026025 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201910. \BBOQ\APACrefatitleMocking the u𝑢uitalic_u-plane integral Mocking the u𝑢uitalic_u-plane integral.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleSquashed Toric Manifolds and Higher Depth Mock Modular Forms Squashed Toric Manifolds and Higher Depth Mock Modular Forms.\BBCQ \APACjournalVolNumPagesJHEP02064. {APACrefDOI} \doi10.1007/JHEP02(2019)064 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleType IIB at eight derivatives: insights from Superstrings, Superfields and Superparticles Type IIB at eight derivatives: insights from Superstrings, Superfields and Superparticles.\BBCQ \APACjournalVolNumPagesJHEP08267. {APACrefDOI} \doi10.1007/JHEP08(2022)267 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1999. \BBOQ\APACrefatitleCorrections to macroscopic supersymmetric black hole entropy Corrections to macroscopic supersymmetric black hole entropy.\BBCQ \APACjournalVolNumPagesPhys. Lett. B451309–316. {APACrefDOI} \doi10.1016/S0370-2693(99)00227-0 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleArithmetic of decay walls through continued fractions: a new exact dyon counting solution in 𝒩𝒩\mathcal{N}caligraphic_N = 4 CHL models Arithmetic of decay walls through continued fractions: a new exact dyon counting solution in 𝒩𝒩\mathcal{N}caligraphic_N = 4 CHL models.\BBCQ \APACjournalVolNumPagesJHEP03154. {APACrefDOI} \doi10.1007/JHEP03(2021)154 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1997. \BBOQ\APACrefatitleBlack hole entropy in M theory Black hole entropy in M theory.\BBCQ \APACjournalVolNumPagesJHEP12002. {APACrefDOI} \doi10.1088/1126-6708/1997/12/002 \PrintBackRefs\CurrentBib
- \APACinsertmetastarManschot:2010sxc{APACrefauthors}Manschot, J. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStability and duality in N=2 supergravity Stability and duality in N=2 supergravity.\BBCQ \APACjournalVolNumPagesCommun. Math. Phys.299651–676. {APACrefDOI} \doi10.1007/s00220-010-1104-x \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleA Modern Farey Tail A Modern Farey Tail.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.4103–159. {APACrefDOI} \doi10.4310/CNTP.2010.v4.n1.a3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20214. \BBOQ\APACrefatitleTopological correlators of SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ), 𝒩=2*𝒩superscript2\mathcal{N}=2^{*}caligraphic_N = 2 start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT SYM on four-manifolds Topological correlators of SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ), 𝒩=2*𝒩superscript2\mathcal{N}=2^{*}caligraphic_N = 2 start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT SYM on four-manifolds.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleWall Crossing from Boltzmann Black Hole Halos Wall Crossing from Boltzmann Black Hole Halos.\BBCQ \APACjournalVolNumPagesJHEP07059. {APACrefDOI} \doi10.1007/JHEP07(2011)059 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSolvable models of quantum black holes: a review on Jackiw–Teitelboim gravity Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity.\BBCQ \APACjournalVolNumPagesLiving Rev. Rel.2614. {APACrefDOI} \doi10.1007/s41114-023-00046-1 \PrintBackRefs\CurrentBib
- \APACinsertmetastarMoore:1998pn{APACrefauthors}Moore, G\BPBIW. \APACrefYearMonthDay19987. \BBOQ\APACrefatitleArithmetic and attractors Arithmetic and attractors.\BBCQ \PrintBackRefs\CurrentBib
- \APACinsertmetastarMurthy:2013mya{APACrefauthors}Murthy, S. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleA holomorphic anomaly in the elliptic genus A holomorphic anomaly in the elliptic genus.\BBCQ \APACjournalVolNumPagesJHEP06165. {APACrefDOI} \doi10.1007/JHEP06(2014)165 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleMock modularity from black hole scattering states Mock modularity from black hole scattering states.\BBCQ \APACjournalVolNumPagesJHEP12119. {APACrefDOI} \doi10.1007/JHEP12(2018)119 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleSingle-centered black hole microstate degeneracies from instantons in supergravity Single-centered black hole microstate degeneracies from instantons in supergravity.\BBCQ \APACjournalVolNumPagesJHEP04052. {APACrefDOI} \doi10.1007/JHEP04(2016)052 \PrintBackRefs\CurrentBib
- \APACinsertmetastarNazaroglu:2016lmr{APACrefauthors}Nazaroglu, C. \APACrefYearMonthDay2018. \BBOQ\APACrefatitler𝑟ritalic_r-Tuple Error Functions and Indefinite Theta Series of Higher-Depth r𝑟ritalic_r-Tuple Error Functions and Indefinite Theta Series of Higher-Depth.\BBCQ \APACjournalVolNumPagesCommun. Num. Theor. Phys.12581–608. {APACrefDOI} \doi10.4310/CNTP.2018.v12.n3.a4 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2004. \BBOQ\APACrefatitleBlack hole attractors and the topological string Black hole attractors and the topological string.\BBCQ \APACjournalVolNumPagesPhys. Rev. D70106007. {APACrefDOI} \doi10.1103/PhysRevD.70.106007 \PrintBackRefs\CurrentBib
- \APACinsertmetastarPioline:2010kb{APACrefauthors}Pioline, B. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleR**4 couplings and automorphic unipotent representations R**4 couplings and automorphic unipotent representations.\BBCQ \APACjournalVolNumPagesJHEP03116. {APACrefDOI} \doi10.1007/JHEP03(2010)116 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1975. \BBOQ\APACrefatitleAn Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon An Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon.\BBCQ \APACjournalVolNumPagesPhys. Rev. Lett.35760–762. {APACrefDOI} \doi10.1103/PhysRevLett.35.760 \PrintBackRefs\CurrentBib
- \APACinsertmetastarRademacher{APACrefauthors}Rademacher, H. \APACrefYearMonthDay1937. \BBOQ\APACrefatitleOn the partition function p(n) On the partition function p(n).\BBCQ \APACjournalVolNumPagesProceedings of the London Mathematical Society, Second Series.43 (4)241–254. \PrintBackRefs\CurrentBib
- \APACinsertmetastarSchutz:1985jx{APACrefauthors}Schutz, B\BPBIF. \APACrefYear2022. \APACrefbtitleA First Course in General Relativity, 3rd Edition A first course in general relativity, 3rd edition. \APACaddressPublisherCambridge Univ. Pr. {APACrefURL} https://www.cambridge.org/gb/academic/subjects/physics/cosmology-relativity-and-gravitation/first-course-general-relativity-3rd-edition?format=HB \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleElectric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory.\BBCQ \APACjournalVolNumPagesNucl. Phys. B42619–52. \APACrefnote[Erratum: Nucl.Phys.B 430, 485–486 (1994)] {APACrefDOI} \doi10.1016/0550-3213(94)90124-4 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:1994fa{APACrefauthors}Sen, A. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleStrong - weak coupling duality in four-dimensional string theory Strong - weak coupling duality in four-dimensional string theory.\BBCQ \APACjournalVolNumPagesInt. J. Mod. Phys. A93707–3750. {APACrefDOI} \doi10.1142/S0217751X94001497 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:1995in{APACrefauthors}Sen, A. \APACrefYearMonthDay1995. \BBOQ\APACrefatitleExtremal black holes and elementary string states Extremal black holes and elementary string states.\BBCQ \APACjournalVolNumPagesMod. Phys. Lett. A102081–2094. {APACrefDOI} \doi10.1142/S0217732395002234 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:2007qy{APACrefauthors}Sen, A. \APACrefYearMonthDay2008\BCnt1. \BBOQ\APACrefatitleBlack Hole Entropy Function, Attractors and Precision Counting of Microstates Black Hole Entropy Function, Attractors and Precision Counting of Microstates.\BBCQ \APACjournalVolNumPagesGen. Rel. Grav.402249–2431. {APACrefDOI} \doi10.1007/s10714-008-0626-4 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:2008yk{APACrefauthors}Sen, A. \APACrefYearMonthDay2008\BCnt2. \BBOQ\APACrefatitleEntropy Function and AdS(2) / CFT(1) Correspondence Entropy Function and AdS(2) / CFT(1) Correspondence.\BBCQ \APACjournalVolNumPagesJHEP11075. {APACrefDOI} \doi10.1088/1126-6708/2008/11/075 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:2009vz{APACrefauthors}Sen, A. \APACrefYearMonthDay2009\BCnt1. \BBOQ\APACrefatitleArithmetic of Quantum Entropy Function Arithmetic of Quantum Entropy Function.\BBCQ \APACjournalVolNumPagesJHEP08068. {APACrefDOI} \doi10.1088/1126-6708/2009/08/068 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:2008vm{APACrefauthors}Sen, A. \APACrefYearMonthDay2009\BCnt2. \BBOQ\APACrefatitleQuantum Entropy Function from AdS(2)/CFT(1) Correspondence Quantum Entropy Function from AdS(2)/CFT(1) Correspondence.\BBCQ \APACjournalVolNumPagesInt. J. Mod. Phys. A244225–4244. {APACrefDOI} \doi10.1142/S0217751X09045893 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSen:2011ktd{APACrefauthors}Sen, A. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleHow Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms? How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms?\BBCQ \APACjournalVolNumPagesGen. Rel. Grav.432171–2183. {APACrefDOI} \doi10.1007/s10714-011-1175-9 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1996. \BBOQ\APACrefatitleMicroscopic origin of the Bekenstein-Hawking entropy Microscopic origin of the Bekenstein-Hawking entropy.\BBCQ \APACjournalVolNumPagesPhys. Lett. B37999–104. {APACrefDOI} \doi10.1016/0370-2693(96)00345-0 \PrintBackRefs\CurrentBib
- \APACinsertmetastarSusskind:1993ws{APACrefauthors}Susskind, L. \APACrefYearMonthDay199310. \BBOQ\APACrefatitleSome speculations about black hole entropy in string theory Some speculations about black hole entropy in string theory.\BBCQ \APACjournalVolNumPages118–131. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleBlack hole entropy in canonical quantum gravity and superstring theory Black hole entropy in canonical quantum gravity and superstring theory.\BBCQ \APACjournalVolNumPagesPhys. Rev. D502700–2711. {APACrefDOI} \doi10.1103/PhysRevD.50.2700 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleSymmetry-surfing the moduli space of Kummer K3s Symmetry-surfing the moduli space of Kummer K3s.\BBCQ \APACjournalVolNumPagesProc. Symp. Pure Math.90129–154. {APACrefDOI} \doi10.1090/pspum/090/01522 \PrintBackRefs\CurrentBib
- \APACinsertmetastartHooft:1990fkf{APACrefauthors}’t Hooft, G. \APACrefYearMonthDay1990. \BBOQ\APACrefatitleThe black hole interpretation of string theory The black hole interpretation of string theory.\BBCQ \APACjournalVolNumPagesNucl. Phys. B335138–154. {APACrefDOI} \doi10.1016/0550-3213(90)90174-C \PrintBackRefs\CurrentBib
- \APACinsertmetastarTroost:2010ud{APACrefauthors}Troost, J. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleThe non-compact elliptic genus: mock or modular The non-compact elliptic genus: mock or modular.\BBCQ \APACjournalVolNumPagesJHEP06104. {APACrefDOI} \doi10.1007/JHEP06(2010)104 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleA Strong coupling test of S duality A Strong coupling test of S duality.\BBCQ \APACjournalVolNumPagesNucl. Phys. B4313–77. {APACrefDOI} \doi10.1016/0550-3213(94)90097-3 \PrintBackRefs\CurrentBib
- \APACinsertmetastarWald:1993nt{APACrefauthors}Wald, R\BPBIM. \APACrefYearMonthDay1993. \BBOQ\APACrefatitleBlack hole entropy is the Noether charge Black hole entropy is the Noether charge.\BBCQ \APACjournalVolNumPagesPhys. Rev. D488R3427–R3431. {APACrefDOI} \doi10.1103/PhysRevD.48.R3427 \PrintBackRefs\CurrentBib
- \APACinsertmetastarWitten:1982df{APACrefauthors}Witten, E. \APACrefYearMonthDay1982. \BBOQ\APACrefatitleConstraints on Supersymmetry Breaking Constraints on Supersymmetry Breaking.\BBCQ \APACjournalVolNumPagesNucl. Phys. B202253. {APACrefDOI} \doi10.1016/0550-3213(82)90071-2 \PrintBackRefs\CurrentBib
- \APACinsertmetastarZagBourbaki{APACrefauthors}Zagier, D. \APACrefYearMonthDay2009. \BBOQ\APACrefatitleRamanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono], Séminaire Bourbaki, 60ème année, 2007-2008, n 986, Astérisque 326 (2009), Soc. Math. de France, 143-164 Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono], Séminaire Bourbaki, 60ème année, 2007-2008, n 986, Astérisque 326 (2009), Soc. Math. de France, 143-164.\BBCQ \PrintBackRefs\CurrentBib
- \APACinsertmetastarzwegers2008mock{APACrefauthors}Zwegers, S. \APACrefYearMonthDay2008. \APACrefbtitleMock Theta Functions, Utrecht PhD thesis. Mock Theta Functions, Utrecht PhD thesis. \PrintBackRefs\CurrentBib
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.