Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Flexible and Inherently Comprehensible Knowledge Representation for Data-Efficient Learning and Trustworthy Human-Machine Teaming in Manufacturing Environments (2305.11597v1)

Published 19 May 2023 in cs.AI

Abstract: Trustworthiness of artificially intelligent agents is vital for the acceptance of human-machine teaming in industrial manufacturing environments. Predictable behaviours and explainable (and understandable) rationale allow humans collaborating with (and building) these agents to understand their motivations and therefore validate decisions that are made. To that aim, we make use of G\"ardenfors's cognitively inspired Conceptual Space framework to represent the agent's knowledge using concepts as convex regions in a space spanned by inherently comprehensible quality dimensions. A simple typicality quantification model is built on top of it to determine fuzzy category membership and classify instances interpretably. We apply it on a use case from the manufacturing domain, using objects' physical properties obtained from cobots' onboard sensors and utilisation properties from crowdsourced commonsense knowledge available at public knowledge bases. Such flexible knowledge representation based on property decomposition allows for data-efficient representation learning of typically highly specialist or specific manufacturing artefacts. In such a setting, traditional data-driven (e.g., computer vision-based) classification approaches would struggle due to training data scarcity. This allows for comprehensibility of an AI agent's acquired knowledge by the human collaborator thus contributing to trustworthiness. We situate our approach within an existing explainability framework specifying explanation desiderata. We provide arguments for our system's applicability and appropriateness for different roles of human agents collaborating with the AI system throughout its design, validation, and operation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.