Papers
Topics
Authors
Recent
2000 character limit reached

TreePrompt: Learning to Compose Tree Prompts for Explainable Visual Grounding (2305.11497v1)

Published 19 May 2023 in cs.CV, cs.AI, cs.CL, and cs.MM

Abstract: Prompt tuning has achieved great success in transferring the knowledge from large pretrained vision-LLMs into downstream tasks, and has dominated the performance on visual grounding (VG). However, almost all existing prompt tuning paradigms suffer from poor interpretability. In this paper, we argue that their poor interpretability is attributed to the holistic prompt generation and inference process. By "holistic", we mean that they usually directly learn a set of vectors as the prompt (i.e., prompt generation), and use the learned global prompt to augment the textual input for the VG model (i.e., prompt inference). To this end, we propose a new prompt construction paradigm with explicit explainable ability, named TreePrompt. Specifically, we first deconstruct a complex sentence into a tree, that is consistent with human reasoning. Then, following the syntax tree, we compose a structured prompt in a bottom-up manner. Thanks to this step-by-step prompt construction process, each intermediate prompt (i.e., tree node) permits us to understand the reasoning process. Extensive ablations on various backbones and benchmarks consistently demonstrate the effectiveness and interpretability of our TreePrompt.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.