Nodal decompositions of a symmetric matrix (2305.10598v3)
Abstract: Analyzing nodal domains is a way to discern the structure of eigenvectors of operators on a graph. We give a new definition extending the concept of nodal domains to arbitrary signed graphs, and therefore to arbitrary symmetric matrices. We show that for an arbitrary symmetric matrix, a positive fraction of eigenbases satisfy a generalized version of known nodal bounds for un-signed (that is classical) graphs. We do this through an explicit decomposition. Moreover, we show that with high probability, the number of nodal domains of a bulk eigenvector of the adjacency matrix of signed a Erd\H{o}s-R\'enyi graph is $\Omega(n/\log n)$ and $o(n)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.