2000 character limit reached
On Grothendieck's section conjecture for curves of index $1$ (2305.10088v1)
Published 17 May 2023 in math.AG and math.NT
Abstract: We prove that every hyperbolic curve with a faithful action of a non-cyclic $p$-group (with a few exceptions if $p=2$) has a twisted form of index $1$ which satisfies Grothendieck's section conjecture. Furthermore, we prove that for every hyperbolic curve $S$ over a field $k$ finitely generated over $\mathbb{Q}$ there exists a finite extension $K/k$ and a finite \'etale cover $C\to S_{K}$ such that $C$ satisfies the conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.