Papers
Topics
Authors
Recent
2000 character limit reached

Continuum-wise hyperbolic homeomorphisms on surfaces

Published 15 May 2023 in math.DS | (2305.09023v1)

Abstract: This paper discusses the dynamics of continuum-wise hyperbolic surface homeomorphisms. We prove that $cw_F$-hyperbolic surface homeomorphisms containing only a finite set of spines are $cw_2$-hyperbolic. In the case of $cw_3$-hyperbolic homeomorphisms we prove the finiteness of spines and, hence, that $cw_3$-hyperbolicity implies $cw_2$-hyperbolicity. In the proof, we adapt techniques of Hiraide [11] and Lewowicz [15] in the case of expansive surface homeomorphisms to prove that local stable/unstable continua of $cw_F$-hyperbolic homeomorphisms are continuous arcs. We also adapt techniques of Artigue, Pac\'ifico and Vieitez [6] in the case of N-expansive surface homeomorphisms to prove that the existence of spines is strongly related to the existence of bi-asymptotic sectors and conclude that spines are necessarily isolated from other spines.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.