Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Decoding Imagined Auditory Pitch Phenomena with an Autoencoder Based Temporal Convolutional Architecture (2305.08987v1)

Published 15 May 2023 in q-bio.NC

Abstract: Stimulus decoding of functional Magnetic Resonance Imaging (fMRI) data with machine learning models has provided new insights about neural representational spaces and task-related dynamics. However, the scarcity of labelled (task-related) fMRI data is a persistent obstacle, resulting in model-underfitting and poor generalization. In this work, we mitigated data poverty by extending a recent pattern-encoding strategy from the visual memory domain to our own domain of auditory pitch tasks, which to our knowledge had not been done. Specifically, extracting preliminary information about participants' neural activation dynamics from the unlabelled fMRI data resulted in improved downstream classifier performance when decoding heard and imagined pitch. Our results demonstrate the benefits of leveraging unlabelled fMRI data against data poverty for decoding pitch based tasks, and yields novel significant evidence for both separate and overlapping pathways of heard and imagined pitch processing, deepening our understanding of auditory cognitive neuroscience.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube