Mean Payoff Optimization for Systems of Periodic Service and Maintenance (2305.08555v2)
Abstract: Consider oriented graph nodes requiring periodic visits by a service agent. The agent moves among the nodes and receives a payoff for each completed service task, depending on the time elapsed since the previous visit to a node. We consider the problem of finding a suitable schedule for the agent to maximize its long-run average payoff per time unit. We show that the problem of constructing an $\varepsilon$-optimal schedule is PSPACE-hard for every fixed $\varepsilon \geq 0$, and that there exists an optimal periodic schedule of exponential length. We propose randomized finite-memory (RFM) schedules as a compact description of the agent's strategies and design an efficient algorithm for constructing RFM schedules. Furthermore, we construct deterministic periodic schedules by sampling from RFM schedules.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.