Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimization of Residential Demand Response Program Cost with Consideration for Occupants Thermal Comfort and Privacy

Published 14 May 2023 in eess.SY, cs.LG, and cs.SY | (2305.08077v1)

Abstract: Residential consumers can use the demand response program (DRP) if they can utilize the home energy management system (HEMS), which reduces consumer costs by automatically adjusting air conditioning (AC) setpoints and shifting some appliances to off-peak hours. If HEMS knows occupancy status, consumers can gain more economic benefits and thermal comfort. However, for the building occupancy status, direct sensing is costly, inaccurate, and intrusive for residents. So, forecasting algorithms could serve as an effective alternative. The goal of this study is to present a non-intrusive, accurate, and cost-effective approach, to develop a multi-objective simulation model for the application of DRPs in a smart residential house, where (a) electrical load demand reduction, (b) adjustment in thermal comfort (AC) temperature setpoints, and (c) , worst cases scenario approach is very conservative. Because that is unlikely all uncertain parameters take their worst values at all times. So, the flexible robust counterpart optimization along with uncertainty budgets is developed to consider uncertainty realistically. Simulated results indicate that considering uncertainty increases the costs by 36 percent and decreases the AC temperature setpoints. Besides, using DRPs reduces demand by shifting some appliance operations to off-peak hours and lowers costs by 13.2 percent.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.