Papers
Topics
Authors
Recent
2000 character limit reached

MHDnet: Physics-preserving learning for solving magnetohydrodynamics problems

Published 13 May 2023 in math.NA and cs.NA | (2305.07940v5)

Abstract: Designing efficient and high-accuracy numerical methods for complex dynamic incompressible magnetohydrodynamics (MHD) equations remains a challenging problem in various analysis and design tasks. This is mainly due to the nonlinear coupling of the magnetic and velocity fields occurring with convection and Lorentz forces, and multiple physical constraints, which will lead to the limitations of numerical computation. In this paper, we develop the MHDnet as a physics-preserving learning approach to solve MHD problems, where three different mathematical formulations are considered and named $B$ formulation, $A_1$ formulation, and $A_2$ formulation. Then the formulations are embedded into the MHDnet that can preserve the underlying physical properties and divergence-free condition. Moreover, MHDnet is designed by the multi-modes feature merging with multiscale neural network architecture, which can accelerate the convergence of the neural networks (NN) by alleviating the interaction of magnetic fluid coupling across different frequency modes. Furthermore, the pressure fields of three formulations, as the hidden state, can be obtained without extra data and computational cost. Several numerical experiments are presented to demonstrate the performance of the proposed MHDnet compared with different NN architectures and numerical formulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.