Papers
Topics
Authors
Recent
2000 character limit reached

Robust Kalman Filters Based on the Sub-Gaussian $α$-stable Distribution (2305.07890v3)

Published 13 May 2023 in eess.SP

Abstract: Motivated by filtering tasks under a linear system with non-Gaussian heavy-tailed noise, various robust Kalman filters (RKFs) based on different heavy-tailed distributions have been proposed. Although the sub-Gaussian $\alpha$-stable (SG$\alpha$S) distribution captures heavy tails well and is applicable in various scenarios, its potential has not yet been explored in RKFs. The main hindrance is that there is no closed-form expression of its mixing density. This paper proposes a novel RKF framework, RKF-SG$\alpha$S, where the signal noise is assumed to be Gaussian and the heavy-tailed measurement noise is modelled by the SG$\alpha$S distribution. The corresponding joint posterior distribution of the state vector and auxiliary random variables is approximated by the Variational Bayesian (VB) approach. Also, four different minimum mean square error (MMSE) estimators of the scale function are presented. The first two methods are based on the Importance Sampling (IS) and Gauss-Laguerre quadrature (GLQ), respectively. In contrast, the last two estimators combine a proposed Gamma series (GS) based method with the IS and GLQ estimators and hence are called GSIS and GSGL. Besides, the RKF-SG$\alpha$S is compared with the state-of-the-art RKFs under three kinds of heavy-tailed measurement noises, and the simulation results demonstrate its estimation accuracy and efficiency. All the code needed to reproduce the results presented in this work are available at: https://github.com/PengchengH/Robust-Kalman-Filters-Based-on-the-Sub-Gaussian-alpha-stable-Distribution.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.