A bilinear sparse domination for the maximal singular integral operators with rough kernels (2305.07832v4)
Abstract: Let $\Omega$ be homogeneous of degree zero, integrable on $S{d-1}$ and have mean value zero, $T_{\Omega}$ be the homogeneous singular integral operator with kernel $\frac{\Omega(x)}{|x|d}$ and $T_{\Omega}*$ be the maximal operator associated to $T_{\Omega}$. In this paper, the authors prove that if $\Omega\in L{\infty}(S{d-1})$, then for all $r\in (1,\,\infty)$, $T_{\Omega}*$ enjoys a $(L\Phi,\,Lr)$ bilinear sparse domination with bound $Cr'|\Omega|_{L{\infty}(S{d-1})}$, where $\Phi(t)=t\log\log ({\rm e}2+t)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.