Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Quantum Simulation of Bound State Scattering (2305.07692v3)

Published 12 May 2023 in quant-ph, hep-lat, and hep-th

Abstract: The last few years have seen rapid development of applications of quantum computation to quantum field theory. The first algorithms for quantum simulation of scattering have been proposed in the context of scalar and fermionic theories, requiring thousands of logical qubits. These algorithms are not suitable to simulate scattering of incoming bound states, as the initial-state preparation relies typically on adiabatically transforming wavepackets of the free theory into wavepackets of the interacting theory. In this paper we present a strategy to excite wavepackets of the interacting theory directly from the vacuum of the interacting theory, allowing the preparation of states of composite particles. This is the first step towards digital quantum simulation of scattering of bound states. The approach is based on the Haag-Ruelle scattering theory, which provides a way to construct creation and annihilation operators of a theory in a full, nonperturbative framework. We provide a quantum algorithm requiring a number of ancillary qubits that is logarithmic in the size of the wavepackets, and with a success probability vanishing at most like a polynomial in the lattice parameters and the energy of the wavepacket. The gate complexity for a single iteration of the circuit is equivalent to that of a time evolution for a fixed time. Furthermore, we propose a complete protocol for scattering simulation using this algorithm. We study its efficiency and find improvements with respect to previous algorithms in the literature.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.