Gravitational signatures of a non--commutative stable black hole (2305.06838v2)
Abstract: This work investigates several key aspects of a non--commutative theory with mass deformation. We calculate thermodynamic properties of the system and compare our results with recent literature. We examine the \textit{quasinormal} modes of massless scalar perturbations using two approaches: the WKB approximation and the P\"oschl--Teller fitting method. Our results indicate that stronger non--commutative parameters lead to slower damping oscillations of gravitational waves and higher partial absorption cross sections. Furthermore, we study the geodesics of massless and massive particles, highlighting that the non--commutative parameter $\Theta$ significantly impacts the paths of light and event horizons. Also, we calculate the shadows, which show that larger values of $\Theta$ correspond to larger shadow radii, and provide some constraints on $\Theta$ applying the observation of Sgr $A{*}$ from the Event Horizon Telescope. Finally, we explore the deflection angle in this context.
- R. M. Wald, General relativity. University of Chicago press, 2010.
- Macmillan, 1973.
- W. Unno, Y. Osaki, H. Ando, and H. Shibahashi, “Nonradial oscillations of stars,” Tokyo: University of Tokyo Press, 1979.
- H. Kjeldsen and T. R. Bedding, “Amplitudes of stellar oscillations: the implications for asteroseismology,” arXiv preprint astro-ph/9403015, 1994.
- W. Dziembowski and P. R. Goode, “Effects of differential rotation on stellar oscillations-a second-order theory,” The Astrophysical Journal, vol. 394, pp. 670–687, 1992.
- F. Pretorius, “Evolution of binary black-hole spacetimes,” Physical review letters, vol. 95, no. 12, p. 121101, 2005.
- J. R. Hurley, C. A. Tout, and O. R. Pols, “Evolution of binary stars and the effect of tides on binary populations,” Monthly Notices of the Royal Astronomical Society, vol. 329, no. 4, pp. 897–928, 2002.
- K. Yakut and P. P. Eggleton, “Evolution of close binary systems,” The Astrophysical Journal, vol. 629, no. 2, p. 1055, 2005.
- E. v. d. Heuvel, “Compact stars and the evolution of binary systems,” in Fluid Flows To Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary, pp. 55–73, World Scientific, 2011.
- K. Riles, “Recent searches for continuous gravitational waves,” Modern Physics Letters A, vol. 32, no. 39, p. 1730035, 2017.
- Á. Rincón and V. Santos, “Greybody factor and quasinormal modes of regular black holes,” The European Physical Journal C, vol. 80, no. 10, pp. 1–7, 2020.
- V. Santos, R. Maluf, and C. Almeida, “Quasinormal frequencies of self-dual black holes,” Physical Review D, vol. 93, no. 8, p. 084047, 2016.
- R. Oliveira, D. Dantas, V. Santos, and C. Almeida, “Quasinormal modes of bumblebee wormhole,” Classical and Quantum Gravity, vol. 36, no. 10, p. 105013, 2019.
- E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black branes,” Classical and Quantum Gravity, vol. 26, no. 16, p. 163001, 2009.
- G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of ads black holes and the approach to thermal equilibrium,” Physical Review D, vol. 62, no. 2, p. 024027, 2000.
- H.-P. Nollert, “Quasinormal modes: the characteristicsound’of black holes and neutron stars,” Classical and Quantum Gravity, vol. 16, no. 12, p. R159, 1999.
- V. Ferrari and B. Mashhoon, “New approach to the quasinormal modes of a black hole,” Physical Review D, vol. 30, no. 2, p. 295, 1984.
- K. D. Kokkotas and B. G. Schmidt, “Quasi-normal modes of stars and black holes,” Living Reviews in Relativity, vol. 2, no. 1, pp. 1–72, 1999.
- L. London, D. Shoemaker, and J. Healy, “Modeling ringdown: Beyond the fundamental quasinormal modes,” Physical Review D, vol. 90, no. 12, p. 124032, 2014.
- M. Maggiore, “Physical interpretation of the spectrum of black hole quasinormal modes,” Physical Review Letters, vol. 100, no. 14, p. 141301, 2008.
- A. Flachi and J. P. Lemos, “Quasinormal modes of regular black holes,” Physical Review D, vol. 87, no. 2, p. 024034, 2013.
- A. Övgün, I. Sakallı, and J. Saavedra, “Quasinormal modes of a schwarzschild black hole immersed in an electromagnetic universe,” Chinese Physics C, vol. 42, no. 10, p. 105102, 2018.
- J. L. Blázquez-Salcedo, X. Y. Chew, and J. Kunz, “Scalar and axial quasinormal modes of massive static phantom wormholes,” Physical Review D, vol. 98, no. 4, p. 044035, 2018.
- P. D. Roy, S. Aneesh, and S. Kar, “Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes,” The European Physical Journal C, vol. 80, no. 9, pp. 1–17, 2020.
- R. Konoplya and A. Zhidenko, “Quasinormal modes of black holes: From astrophysics to string theory,” Reviews of Modern Physics, vol. 83, no. 3, p. 793, 2011.
- J. Y. Kim, C. O. Lee, and M.-I. Park, “Quasi-normal modes of a natural ads wormhole in einstein–born–infeld gravity,” The European Physical Journal C, vol. 78, no. 12, pp. 1–15, 2018.
- C. O. Lee, J. Y. Kim, and M.-I. Park, “Quasi-normal modes and stability of einstein–born–infeld black holes in de sitter space,” The European Physical Journal C, vol. 80, no. 8, pp. 1–21, 2020.
- A. Jawad, S. Chaudhary, M. Yasir, A. Övgün, and İ. Sakallı, “Quasinormal modes of extended gravity black holes through higher order wkb method,” International Journal of Geometric Methods in Modern Physics, p. 2350129, 2023.
- R. Maluf, V. Santos, W. Cruz, and C. Almeida, “Matter-gravity scattering in the presence of spontaneous lorentz violation,” Physical Review D, vol. 88, no. 2, p. 025005, 2013.
- R. Maluf, C. Almeida, R. Casana, and M. Ferreira Jr, “Einstein-hilbert graviton modes modified by the lorentz-violating bumblebee field,” Physical Review D, vol. 90, no. 2, p. 025007, 2014.
- M. Okyay and A. Övgün, “Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors,” Journal of Cosmology and Astroparticle Physics, vol. 2022, no. 01, p. 009, 2022.
- Y. Zhao, X. Ren, A. Ilyas, E. N. Saridakis, and Y.-F. Cai, “Quasinormal modes of black holes in f (t) gravity,” Journal of Cosmology and Astroparticle Physics, vol. 2022, no. 10, p. 087, 2022.
- S. Boudet, F. Bombacigno, G. J. Olmo, and P. J. Porfirio, “Quasinormal modes of schwarzschild black holes in projective invariant chern-simons modified gravity,” Journal of Cosmology and Astroparticle Physics, vol. 2022, no. 05, p. 032, 2022.
- M. Cadoni, M. Oi, and A. P. Sanna, “Quasi-normal modes and microscopic description of 2d black holes,” Journal of High Energy Physics, vol. 2022, no. 1, pp. 1–23, 2022.
- L. Hui, D. Kabat, and S. S. Wong, “Quasinormal modes, echoes and the causal structure of the green’s function,” Journal of Cosmology and Astroparticle Physics, vol. 2019, no. 12, p. 020, 2019.
- B. Abbott, S. Jawahar, N. Lockerbie, and K. Tokmakov, “Ligo scientific collaboration and virgo collaboration (2016) directly comparing gw150914 with numerical solutions of einstein’s equations for binary black hole coalescence. physical review d, 94 (6). issn 1550-2368, http://dx. doi. org/10.1103/physrevd. 94.064035,” PHYSICAL REVIEW D Phys Rev D, vol. 94, p. 064035, 2016.
- B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., “Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L13, 2017.
- B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., “Gw170817: observation of gravitational waves from a binary neutron star inspiral,” Physical Review Letters, vol. 119, no. 16, p. 161101, 2017.
- B. P. Abbott, S. Bloemen, P. Canizares, H. Falcke, R. Fender, S. Ghosh, P. Groot, T. Hinderer, J. Hörandel, P. Jonker, et al., “Multi-messenger observations of a binary neutron star merger,” 2017.
- V. Fafone, “Advanced virgo: an update,” in THE THIRTEENTH MARCEL GROSSMANN MEETING: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 2025–2028, World Scientific, 2015.
- A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, et al., “Ligo: The laser interferometer gravitational-wave observatory,” science, vol. 256, no. 5055, pp. 325–333, 1992.
- World Scientific, 1995.
- H. Lück, G. Team, et al., “The geo600 project,” Classical and quantum gravity, vol. 14, no. 6, p. 1471, 1997.
- M. Evans, “Gravitational wave detection with advanced ground based detectors,” General Relativity and Gravitation, vol. 46, no. 10, p. 1778, 2014.
- K. S. Thorne, “Probing black holes and relativistic stars with gravitational waves,” in Black Holes and the Structure of the Universe, pp. 81–118, World Scientific, 2000.
- T. Regge and J. A. Wheeler, “Stability of a schwarzschild singularity,” Physical Review, vol. 108, no. 4, p. 1063, 1957.
- F. J. Zerilli, “Effective potential for even-parity regge-wheeler gravitational perturbation equations,” Physical Review Letters, vol. 24, no. 13, p. 737, 1970.
- F. J. Zerilli, “Perturbation analysis for gravitational and electromagnetic radiation in a reissner-nordström geometry,” Physical Review D, vol. 9, no. 4, p. 860, 1974.
- C. A. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” International Journal of Modern Physics D, vol. 24, no. 09, p. 1542014, 2015.
- E. Ayón-Beato, F. Canfora, and J. Zanelli, “Analytic self-gravitating skyrmions, cosmological bounces and ads wormholes,” Physics Letters B, vol. 752, pp. 201–205, 2016.
- M. Colpi, S. L. Shapiro, and I. Wasserman, “Boson stars: gravitational equilibria of self-interacting scalar fields,” Physical review letters, vol. 57, no. 20, p. 2485, 1986.
- C. Palenzuela, P. Pani, M. Bezares, V. Cardoso, L. Lehner, and S. Liebling, “Gravitational wave signatures of highly compact boson star binaries,” Physical Review D, vol. 96, no. 10, p. 104058, 2017.
- P. V. Cunha, J. A. Font, C. Herdeiro, E. Radu, N. Sanchis-Gual, and M. Zilhao, “Lensing and dynamics of ultracompact bosonic stars,” Physical Review D, vol. 96, no. 10, p. 104040, 2017.
- M. Visser and D. L. Wiltshire, “Stable gravastars—an alternative to black holes?,” Classical and Quantum Gravity, vol. 21, no. 4, p. 1135, 2004.
- P. Pani, E. Berti, V. Cardoso, Y. Chen, and R. Norte, “Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar,” Physical Review D, vol. 80, no. 12, p. 124047, 2009.
- C. Chirenti and L. Rezzolla, “Did gw150914 produce a rotating gravastar?,” Physical Review D, vol. 94, no. 8, p. 084016, 2016.
- V. Cardoso, O. J. Dias, J. P. Lemos, and S. Yoshida, “Black-hole bomb and superradiant instabilities,” Physical Review D, vol. 70, no. 4, p. 044039, 2004.
- N. Sanchis-Gual, J. C. Degollado, P. J. Montero, J. A. Font, and C. Herdeiro, “Explosion and final state of an unstable reissner-nordström black hole,” Physical review letters, vol. 116, no. 14, p. 141101, 2016.
- S. Hod, “The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field,” Physics Letters B, vol. 755, pp. 177–182, 2016.
- R. Brito, V. Cardoso, and P. Pani, “Black holes as particle detectors: evolution of superradiant instabilities,” Classical and Quantum Gravity, vol. 32, no. 13, p. 134001, 2015.
- R. J. Szabo, “Symmetry, gravity and noncommutativity,” Classical and Quantum Gravity, vol. 23, no. 22, p. R199, 2006.
- R. J. Szabo, “Quantum field theory on noncommutative spaces,” Physics Reports, vol. 378, no. 4, pp. 207–299, 2003.
- N. Seiberg and E. Witten, “String theory and noncommutative geometry,” Journal of High Energy Physics, vol. 1999, no. 09, p. 032, 1999.
- A. F. Ferrari, H. O. Girotti, M. Gomes, A. Y. Petrov, A. Ribeiro, and A. Da Silva, “On the finiteness of noncommutative supersymmetric qed3 in the covariant superfield formulation,” Physics Letters B, vol. 577, no. 1-2, pp. 83–92, 2003.
- A. F. Ferrari, H. O. Girotti, M. Gomes, A. Y. Petrov, A. Ribeiro, V. O. Rivelles, and A. Da Silva, “Superfield covariant analysis of the divergence structure of noncommutative supersymmetric qed 4,” Physical Review D, vol. 69, no. 2, p. 025008, 2004.
- A. F. Ferrari, H. O. Girotti, M. Gomes, A. Y. Petrov, A. Ribeiro, V. O. Rivelles, and A. da Silva, “Towards a consistent noncommutative supersymmetric yang-mills theory: Superfield covariant analysis,” Physical Review D, vol. 70, no. 8, p. 085012, 2004.
- A. H. Chamseddine, “Deforming einstein’s gravity,” Physics Letters B, vol. 504, no. 1-2, pp. 33–37, 2001.
- P. Nicolini, “Noncommutative black holes, the final appeal to quantum gravity: a review,” International Journal of Modern Physics A, vol. 24, no. 07, pp. 1229–1308, 2009.
- J. Lopez-Dominguez, O. Obregon, M. Sabido, and C. Ramirez, “Towards noncommutative quantum black holes,” Physical Review D, vol. 74, no. 8, p. 084024, 2006.
- L. Modesto and P. Nicolini, “Charged rotating noncommutative black holes,” Physical Review D, vol. 82, no. 10, p. 104035, 2010.
- R. B. Mann and P. Nicolini, “Cosmological production of noncommutative black holes,” Physical Review D, vol. 84, no. 6, p. 064014, 2011.
- M. Chaichian, A. Tureanu, and G. Zet, “Corrections to schwarzschild solution in noncommutative gauge theory of gravity,” Physics Letters B, vol. 660, no. 5, pp. 573–578, 2008.
- G. Zet, V. Manta, and S. Babeti, “Desitter gauge theory of gravitation,” International Journal of Modern Physics C, vol. 14, no. 01, pp. 41–48, 2003.
- J. Campos, M. Anacleto, F. Brito, and E. Passos, “Quasinormal modes and shadow of noncommutative black hole,” Scientific Reports, vol. 12, no. 1, p. 8516, 2022.
- Y. Zhao, Y. Cai, S. Das, G. Lambiase, E. Saridakis, and E. Vagenas, “Quasinormal modes in noncommutative schwarzschild black holes,” arXiv preprint arXiv:2301.09147, 2023.
- M. Karimabadi, S. A. Alavi, and D. M. Yekta, “Non-commutative effects on gravitational measurements,” Classical and Quantum Gravity, vol. 37, no. 8, p. 085009, 2020.
- Y. S. Myung, Y.-W. Kim, and Y.-J. Park, “Thermodynamics and evaporation of the noncommutative black hole,” Journal of High Energy Physics, vol. 2007, no. 02, p. 012, 2007.
- A. A. Araújo Filho, S. Zare, P. J. Porfírio, J. Kříž, and H. Hassanabadi, “Thermodynamics and evaporation of a modified schwarzschild black hole in a non–commutative gauge theory,” Physics Letters B, vol. 838, p. 137744, 2023.
- R. Banerjee, B. R. Majhi, and S. Samanta, “Noncommutative black hole thermodynamics,” Physical Review D, vol. 77, no. 12, p. 124035, 2008.
- M. Sharif and W. Javed, “Thermodynamics of a bardeen black hole in noncommutative space,” Canadian Journal of Physics, vol. 89, no. 10, pp. 1027–1033, 2011.
- K. Nozari and B. Fazlpour, “Reissner-nordstr\\\backslash\”{{\{{o}}\}} m black hole thermodynamics in noncommutative spaces,” arXiv preprint gr-qc/0608077, 2006.
- K. Nozari and B. Fazlpour, “Thermodynamics of noncommutative schwarzschild black hole,” Modern Physics Letters A, vol. 22, no. 38, pp. 2917–2930, 2007.
- R. R. Oliveira, A. A. Araújo Filho, F. C. Lima, R. V. Maluf, and C. A. Almeida, “Thermodynamic properties of an aharonov-bohm quantum ring,” The European Physical Journal Plus, vol. 134, no. 10, p. 495, 2019.
- A. A. Araújo Filho and J. Reis, “Thermal aspects of interacting quantum gases in lorentz-violating scenarios,” The European Physical Journal Plus, vol. 136, pp. 1–30, 2021.
- R. Oliveira et al., “Thermodynamic properties of neutral dirac particles in the presence of an electromagnetic field,” The European Physical Journal Plus, vol. 135, no. 1, pp. 1–10, 2020.
- A. A. Araújo Filho, “Lorentz-violating scenarios in a thermal reservoir,” The European Physical Journal Plus, vol. 136, no. 4, pp. 1–14, 2021.
- R. Oliveira, A. A. Araújo Filho, R. Maluf, and C. Almeida, “The relativistic aharonov–bohm–coulomb system with position-dependent mass,” Journal of Physics A: Mathematical and Theoretical, vol. 53, no. 4, p. 045304, 2020.
- A. A. Araújo Filho and R. V. Maluf, “Thermodynamic properties in higher-derivative electrodynamics,” Brazilian Journal of Physics, vol. 51, pp. 820–830, 2021.
- A. A. Araújo Filho and A. Y. Petrov, “Higher-derivative lorentz-breaking dispersion relations: a thermal description,” The European Physical Journal C, vol. 81, no. 9, p. 843, 2021.
- A. A. Araújo Filho and A. Y. Petrov, “Bouncing universe in a heat bath,” International Journal of Modern Physics A, vol. 36, no. 34n35, p. 2150242, 2021.
- A. A. Araújo Filho, “Thermodynamics of massless particles in curved spacetime,” arXiv preprint arXiv:2201.00066, 2022.
- A. A. Araújo Filho, “Particles in loop quantum gravity formalism: a thermodynamical description,” Annalen der Physik, p. 2200383, 2022.
- A. A. Araújo Filho, J. Reis, and S. Ghosh, “Fermions on a torus knot,” The European Physical Journal Plus, vol. 137, no. 5, p. 614, 2022.
- A. A. Araújo Filho and J. Reis, “How does geometry affect quantum gases?,” International Journal of Modern Physics A, vol. 37, no. 11n12, p. 2250071, 2022.
- P. Sedaghatnia, H. Hassanabadi, J. Porfírio, W. Chung, et al., “Thermodynamical properties of a deformed schwarzschild black hole via dunkl generalization,” arXiv preprint arXiv:2302.11460, 2023.
- A. A. Araújo Filho, J. Furtado, and J. Silva, “Thermodynamical properties of an ideal gas in a traversable wormhole,” arXiv preprint arXiv:2302.05492, 2023.
- P. Nicolini, A. Smailagic, and E. Spallucci, “Noncommutative geometry inspired schwarzschild black hole,” Physics Letters B, vol. 632, no. 4, pp. 547–551, 2006.
- B. Puliçe, R. C. Pantig, A. Övgün, and D. Demir, “Constraints on charged symmergent black hole from shadow and lensing,” Classical and Quantum Gravity, vol. 40, no. 19, p. 195003, 2023.
- D. J. Gogoi, A. Övgün, and M. Koussour, “Quasinormal modes of black holes in f(q)𝑓𝑞f(q)italic_f ( italic_q ) gravity,” arXiv preprint arXiv:2303.07424, 2023.
- R. C. Pantig, A. Övgün, and D. Demir, “Testing symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the m87 and sgr. a results,” The European Physical Journal C, vol. 83, no. 3, p. 250, 2023.
- İ. Çimdiker, D. Demir, and A. Övgün, “Black hole shadow in symmergent gravity,” Physics of the Dark Universe, vol. 34, p. 100900, 2021.
- G. Lambiase, R. C. Pantig, D. J. Gogoi, and A. Övgün, “Investigating the connection between generalized uncertainty principle and asymptotically safe gravity in black hole signatures through shadow and quasinormal modes,” arXiv preprint arXiv:2304.00183, 2023.
- R. C. Pantig and A. Övgün, “Black hole in quantum wave dark matter,” Fortschritte der Physik, vol. 71, no. 1, p. 2200164, 2023.
- R. C. Pantig, L. Mastrototaro, G. Lambiase, and A. Övgün, “Shadow, lensing and neutrino propagation by dyonic modmax black holes,” arXiv preprint arXiv:2208.06664, 2022.
- A. Uniyal, R. C. Pantig, and A. Övgün, “Probing a non-linear electrodynamics black hole with thin accretion disk, shadow, and deflection angle with m87 and sgr a from eht,” Physics of the Dark Universe, vol. 40, p. 101178, 2023.
- Y. Yang, D. Liu, A. Övgün, Z.-W. Long, and Z. Xu, “Probing hairy black holes caused by gravitational decoupling using quasinormal modes and greybody bounds,” Physical Review D, vol. 107, no. 6, p. 064042, 2023.
- R. C. Pantig and A. Övgün, “Dehnen halo effect on a black hole in an ultra-faint dwarf galaxy,” Journal of Cosmology and Astroparticle Physics, vol. 2022, no. 08, p. 056, 2022.
- A. Övgün and I. Sakallı, “Testing generalized einstein–cartan–kibble–sciama gravity using weak deflection angle and shadow cast,” Classical and Quantum Gravity, vol. 37, no. 22, p. 225003, 2020.
- A. Övgün, İ. Sakallı, and J. Saavedra, “Shadow cast and deflection angle of kerr-newman-kasuya spacetime,” Journal of Cosmology and Astroparticle Physics, vol. 2018, no. 10, p. 041, 2018.
- D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the mechanics of ads black holes,” Classical and Quantum Gravity, vol. 26, no. 19, p. 195011, 2009.
- S. Iyer and C. M. Will, “Black-hole normal modes: A wkb approach. i. foundations and application of a higher-order wkb analysis of potential-barrier scattering,” Physical Review D, vol. 35, no. 12, p. 3621, 1987.
- S. Iyer, “Black-hole normal modes: A wkb approach. ii. schwarzschild black holes,” Physical Review D, vol. 35, no. 12, p. 3632, 1987.
- R. Konoplya, “Quasinormal behavior of the d-dimensional schwarzschild black hole and the higher order wkb approach,” Physical Review D, vol. 68, no. 2, p. 024018, 2003.
- H.-J. Blome and B. Mashhoon, “Quasi-normal oscillations of a schwarzschild black hole,” Physics Letters A, vol. 100, no. 5, pp. 231–234, 1984.
- V. Ferrari and B. Mashhoon, “Oscillations of a black hole,” Physical review letters, vol. 52, no. 16, p. 1361, 1984.
- N. Heidari and H. Hassanabadi, “Investigation of the quasinormal modes of a schwarzschild black hole by a new generalized approach,” Physics Letters B, vol. 839, p. 137814, 2023.
- E. W. Leaver, “An analytic representation for the quasi-normal modes of kerr black holes,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 402, no. 1823, pp. 285–298, 1985.
- E. W. Leaver, “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics,” Journal of mathematical physics, vol. 27, no. 5, pp. 1238–1265, 1986.
- E. W. Leaver, “Spectral decomposition of the perturbation response of the schwarzschild geometry,” Physical Review D, vol. 34, no. 2, p. 384, 1986.
- B. F. Schutz and C. M. Will, “Black hole normal modes: a semianalytic approach,” The Astrophysical Journal, vol. 291, pp. L33–L36, 1985.
- R. Konoplya, “Quasinormal modes of the schwarzschild black hole and higher order wkb approach,” J. Phys. Stud, vol. 8, p. 93, 2004.
- J. Matyjasek and M. Opala, “Quasinormal modes of black holes: The improved semianalytic approach,” Physical Review D, vol. 96, no. 2, p. 024011, 2017.
- N. Heidari, H. Hassanabadi, and H. Chen, “Quantum-corrected scattering of a schwarzschild black hole with gup effect,” Physics Letters B, vol. 838, p. 137707, 2023.
- L. C. Crispino, A. Higuchi, E. S. Oliveira, and J. V. Rocha, “Greybody factors for nonminimally coupled scalar fields in schwarzschild–de sitter spacetime,” Physical Review D, vol. 87, no. 10, p. 104034, 2013.
- R. Konoplya and A. Zinhailo, “Hawking radiation of non-schwarzschild black holes in higher derivative gravity: a crucial role of grey-body factors,” Physical Review D, vol. 99, no. 10, p. 104060, 2019.
- V. Cardoso, M. Cavaglia, and L. Gualtieri, “Black hole particle emission in higher-dimensional spacetimes,” Physical review letters, vol. 96, no. 7, p. 071301, 2006.
- R. Konoplya, “Quantum corrected black holes: Quasinormal modes, scattering, shadows,” Physics Letters B, vol. 804, p. 135363, 2020.
- R. Konoplya, A. Zhidenko, and A. Zinhailo, “Higher order wkb formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations,” Classical and Quantum Gravity, vol. 36, no. 15, p. 155002, 2019.
- A. Snepppen, “Divergent reflections around the photon sphere of a black hole,” Scientific reports, vol. 11, no. 1, p. 14247, 2021.
- A. Touati and S. Zaim, “Geodesic equation in non-commutative gauge theory of gravity,” Chinese Physics C, vol. 46, no. 10, p. 105101, 2022.
- B. Carter, “Global structure of the kerr family of gravitational fields,” Physical Review, vol. 174, no. 5, p. 1559, 1968.
- B. P. Singh and S. G. Ghosh, “Shadow of schwarzschild–tangherlini black holes,” Annals of Physics, vol. 395, pp. 127–137, 2018.
- K. Jusufi, “Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius,” Physical Review D, vol. 101, no. 8, p. 084055, 2020.
- S. Vagnozzi, R. Roy, Y.-D. Tsai, L. Visinelli, M. Afrin, A. Allahyari, P. Bambhaniya, D. Dey, S. G. Ghosh, P. S. Joshi, et al., “Horizon-scale tests of gravity theories and fundamental physics from the event horizon telescope image of sagittarius a,” Classical and Quantum Gravity, 2022.
- K. Akiyama, A. Alberdi, W. Alef, J. C. Algaba, R. Anantua, K. Asada, R. Azulay, U. Bach, A.-K. Baczko, D. Ball, et al., “First sagittarius a* event horizon telescope results. vi. testing the black hole metric,” The Astrophysical Journal Letters, vol. 930, no. 2, p. L17, 2022.
- J. Sultana and D. Kazanas, “Bending of light in conformal weyl gravity,” Physical Review D, vol. 81, no. 12, p. 127502, 2010.
- A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura, and H. Asada, “Gravitational bending angle of light for finite distance and the gauss-bonnet theorem,” Physical Review D, vol. 94, no. 8, p. 084015, 2016.
- S. M. Kopeikin and V. V. Makarov, “Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers,” Physical Review D, vol. 75, no. 6, p. 062002, 2007.
- A. Y. Bin-Nun, “Strong gravitational lensing by sgr a,” Classical and Quantum Gravity, vol. 28, no. 11, p. 114003, 2011.
- S. Fernando and S. Roberts, “Gravitational lensing by charged black holes,” General Relativity and Gravitation, vol. 34, pp. 1221–1230, 2002.
- A. M. Beloborodov, “Gravitational bending of light near compact objects,” The Astrophysical Journal, vol. 566, no. 2, p. L85, 2002.
- S. Weinberg, “Gravitation and cosmology: principles and applications of the general theory of relativity,” 1972.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.