MIMO Radar Transmit Signal Optimization for Target Localization Exploiting Prior Information
Abstract: In this paper, we consider a multiple-input multiple-output (MIMO) radar system for localizing a target based on its reflected echo signals. Specifically, we aim to estimate the random and unknown angle information of the target, by exploiting its prior distribution information. First, we characterize the estimation performance by deriving the posterior Cram\'er-Rao bound (PCRB), which quantifies a lower bound of the estimation mean-squared error (MSE). Since the PCRB is in a complicated form, we derive a tight upper bound of it to approximate the estimation performance. Based on this, we analytically show that by exploiting the prior distribution information, the PCRB is always no larger than the Cram\'er-Rao bound (CRB) averaged over random angle realizations without prior information exploitation. Next, we formulate the transmit signal optimization problem to minimize the PCRB upper bound. We show that the optimal sample covariance matrix has a rank-one structure, and derive the optimal signal solution in closed form. Numerical results show that our proposed design achieves significantly improved PCRB performance compared to various benchmark schemes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.