Papers
Topics
Authors
Recent
2000 character limit reached

Finite element approximation of unique continuation of functions with finite dimensional trace

Published 11 May 2023 in math.NA and cs.NA | (2305.06800v1)

Abstract: We consider a unique continuation problem where the Dirichlet trace of the solution is known to have finite dimension. We prove Lipschitz stability of the unique continuation problem and design a finite element method that exploits the finite dimensionality to enhance stability. Optimal a priori and a posteriori error estimates are shown for the method. The extension to problems where the trace is not in a finite dimensional space, but can be approximated to high accuracy using finite dimensional functions is discussed. Finally, the theory is illustrated in some numerical examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.