Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data II: Rigorous Numerics

Published 9 May 2023 in math.AP, cs.NA, and math.NA | (2305.05660v2)

Abstract: This is Part II of our paper in which we prove finite time blowup of the 2D Boussinesq and 3D axisymmetric Euler equations with smooth initial data of finite energy and boundary. In Part I of our paper [ChenHou2023a], we establish an analytic framework to prove stability of an approximate self-similar blowup profile by a combination of a weighted $L\infty$ norm and a weighted $C{1/2}$ norm. Under the assumption that the stability constants, which depend on the approximate steady state, satisfy certain inequalities stated in our stability lemma, we prove stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth initial data and boundary. In Part II of our paper, we provide sharp stability estimates of the linearized operator by constructing space-time solutions with rigorous error control. We also obtain sharp estimates of the velocity in the regular case using computer assistance. These results enable us to verify that the stability constants obtained in Part I [ChenHou2023a] indeed satisfy the inequalities in our stability lemma. This completes the analysis of the finite time singularity of the axisymmetric Euler equations with smooth initial data and boundary.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.