Primordial Black Holes from Supercooled Phase Transitions (2305.04942v3)
Abstract: Cosmological first-order phase transitions (1stOPTs) are said to be strongly supercooled when the nucleation temperature is much smaller than the critical temperature. These are often encountered in theories that admit a nearly scale-invariant potential, for which the bounce action decreases only logarithmically with temperature. During supercooled 1stOPTs the equation of state of the universe undergoes a rapid and drastic change, transitioning from vacuum-domination to radiation-domination. The statistical variations in bubble nucleation histories imply that distinct causal patches percolate at slightly different times. Patches which percolate the latest undergo the longest vacuum-domination stage and as a consequence develop large over-densities triggering their collapse into primordial black holes (PBHs). We derive an analytical approximation for the probability of a patch to collapse into a PBH as a function of the 1stOPT duration, $\beta{-1}$, and deduce the expected PBH abundance. We find that 1stOPTs which take more than $15\%$ of a Hubble time to complete ($\beta/H \lesssim 7$) produce observable PBHs. Their abundance is independent of the duration of the supercooling phase, in agreement with the de Sitter no hair conjecture.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Gwtc-1: a Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by Ligo and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
- B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. Soc. 168, 399 (1974).
- B. J. Carr and J. E. Lidsey, Primordial Black Holes and Generalized Constraints on Chaotic Inflation, Phys. Rev. D 48, 543 (1993).
- P. Ivanov, P. Naselsky, and I. Novikov, Inflation and Primordial Black Holes as Dark Matter, Phys. Rev. D 50, 7173 (1994).
- S. W. Hawking, Black Holes from Cosmic Strings, Phys. Lett. B 231, 237 (1989).
- R. R. Caldwell and P. Casper, Formation of black holes from collapsed cosmic string loops, Phys. Rev. D 53, 3002 (1996), arXiv:gr-qc/9509012 .
- A. C. Jenkins and M. Sakellariadou, Primordial black holes from cusp collapse on cosmic strings, (2020), arXiv:2006.16249 [astro-ph.CO] .
- J. J. Blanco-Pillado, K. D. Olum, and A. Vilenkin, No black holes from cosmic string cusps, (2021), arXiv:2101.05040 [astro-ph.CO] .
- T. Vachaspati, Lunar Mass Black Holes from QCD Axion Cosmology, (2017), arXiv:1706.03868 [hep-th] .
- A. Dolgov and J. Silk, Baryon Isocurvature Fluctuations at Small Scales and Baryonic Dark Matter, Phys. Rev. D 47, 4244 (1993).
- K. Kasai, M. Kawasaki, and K. Murai, Revisiting the Affleck-Dine Mechanism for Primordial Black Hole Formation, JCAP 10, 048, arXiv:2205.10148 [astro-ph.CO] .
- E. Cotner and A. Kusenko, Primordial black holes from supersymmetry in the early universe, Phys. Rev. Lett. 119, 031103 (2017), arXiv:1612.02529 [astro-ph.CO] .
- J. Martin, T. Papanikolaou, and V. Vennin, Primordial black holes from the preheating instability in single-field inflation, JCAP 01, 024, arXiv:1907.04236 [astro-ph.CO] .
- M. M. Flores and A. Kusenko, Primordial Black Holes from Long-Range Scalar Forces and Scalar Radiative Cooling, Phys. Rev. Lett. 126, 041101 (2021), arXiv:2008.12456 [astro-ph.CO] .
- S. W. Hawking, I. G. Moss, and J. M. Stewart, Bubble Collisions in the Very Early Universe, Phys. Rev. D 26, 2681 (1982).
- I. G. Moss, Singularity Formation from Colliding Bubbles, Phys. Rev. D 50, 676 (1994).
- A. Ashoorioon, A. Rostami, and J. T. Firouzjaee, Examining the end of inflation with primordial black holes mass distribution and gravitational waves, Phys. Rev. D 103, 123512 (2021), arXiv:2012.02817 [astro-ph.CO] .
- M. Crawford and D. N. Schramm, Spontaneous Generation of Density Perturbations in the Early Universe, Nature 298, 538 (1982).
- K. Kawana and K.-P. Xie, Primordial Black Holes from a Cosmic Phase Transition: the Collapse of Fermi-Balls, Phys. Lett. B 824, 136791 (2022), arXiv:2106.00111 [astro-ph.CO] .
- P. Huang and K.-P. Xie, Primordial black holes from an electroweak phase transition, Phys. Rev. D 105, 115033 (2022), arXiv:2201.07243 [hep-ph] .
- J. Garriga, A. Vilenkin, and J. Zhang, Black Holes and the Multiverse, JCAP 02, 064, arXiv:1512.01819 [hep-th] .
- H. Deng, J. Garriga, and A. Vilenkin, Primordial Black Hole and Wormhole Formation by Domain Walls, JCAP 04, 050, arXiv:1612.03753 [gr-qc] .
- H. Deng and A. Vilenkin, Primordial Black Hole Formation by Vacuum Bubbles, JCAP 12, 044, arXiv:1710.02865 [gr-qc] .
- H. Kodama, M. Sasaki, and K. Sato, Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition, Prog. Theor. Phys. 68, 1979 (1982).
- S. D. H. Hsu, Black Holes From Extended Inflation, Phys. Lett. B 251, 343 (1990).
- K. Hashino, S. Kanemura, and T. Takahashi, Primordial Black Holes as a Probe of Strongly First-Order Electroweak Phase Transition, (2021), arXiv:2111.13099 [hep-ph] .
- K. Kawana, T. Kim, and P. Lu, PBH Formation from Overdensities in Delayed Vacuum Transitions, (2022), arXiv:2212.14037 [astro-ph.CO] .
- M. Lewicki, P. Toczek, and V. Vaskonen, Primordial black holes from strong first-order phase transitions, (2023), arXiv:2305.04924 [astro-ph.CO] .
- E. W. Kolb and M. S. Turner, The Early Universe, Vol. 69 (1990).
- A. H. Guth and S. H. H. Tye, Phase Transitions and Magnetic Monopole Production in the Very Early Universe, Phys. Rev. Lett. 44, 631 (1980), [Erratum: Phys.Rev.Lett. 44, 963 (1980)].
- B. J. Carr, The Primordial Black Hole Mass Spectrum, Astrophys. J. 201, 1 (1975).
- I. Musco and J. C. Miller, Primordial black hole formation in the early universe: critical behaviour and self-similarity, Class. Quant. Grav. 30, 145009 (2013), arXiv:1201.2379 [gr-qc] .
- R. M. Wald, Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D 28, 2118 (1983).
- A. Escrivà and A. E. Romano, Effects of the shape of curvature peaks on the size of primordial black holes, JCAP 05, 066, arXiv:2103.03867 [gr-qc] .
- Y. Ali-Haïmoud and M. Kamionkowski, Cosmic microwave background limits on accreting primordial black holes, Phys. Rev. D 95, 043534 (2017), arXiv:1612.05644 [astro-ph.CO] .
- V. Poulin, J. Lesgourgues, and P. D. Serpico, Cosmological Constraints on Exotic Injection of Electromagnetic Energy, JCAP 03, 043, arXiv:1610.10051 [astro-ph.CO] .
- C. Alcock et al. (MACHO), The MACHO project: Microlensing results from 5.7 years of LMC observations, Astrophys. J. 542, 281 (2000), arXiv:astro-ph/0001272 .
- P. Tisserand et al. (EROS-2), Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds, Astron. Astrophys. 469, 387 (2007), arXiv:astro-ph/0607207 .
- H. Niikura et al., Microlensing Constraints on Primordial Black Holes with Subaru/Hsc Andromeda Observations, Nature Astron. 3, 524 (2019b), arXiv:1701.02151 [astro-ph.CO] .
- M. Boudaud and M. Cirelli, Voyager 1 e±superscript𝑒plus-or-minuse^{\pm}italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT Further Constrain Primordial Black Holes as Dark Matter, Phys. Rev. Lett. 122, 041104 (2019), arXiv:1807.03075 [astro-ph.HE] .
- S. Sugiyama, M. Takada, and A. Kusenko, Possible Evidence of QCD Axion Stars in Hsc and Ogle Microlensing Events, (2021), arXiv:2108.03063 [hep-ph] .
- Z. Arzoumanian et al. (NANOGrav), Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset, Phys. Rev. Lett. 127, 251302 (2021), arXiv:2104.13930 [astro-ph.CO] .
- S. Chen et al., Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search 10.1093/mnras/stab2833 (2021), arXiv:2110.13184 [astro-ph.HE] .
- B. Goncharov et al., On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the Parkes Pulsar Timing Array 10.3847/2041-8213/ac17f4 (2021), arXiv:2107.12112 [astro-ph.HE] .
- J. Antoniadis et al., The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background, Mon. Not. Roy. Astron. Soc. 510, 4873 (2022), arXiv:2201.03980 [astro-ph.HE] .
- V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory (World Scientific, Singapore, 2017).
- C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04, 001, arXiv:1512.06239 [astro-ph.CO] .
- C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03, 024, arXiv:1910.13125 [astro-ph.CO] .
- Y. Gouttenoire, R. Jinno, and F. Sala, Friction pressure on relativistic bubble walls, JHEP 05, 004, arXiv:2112.07686 [hep-ph] .
- Y. Gouttenoire, Beyond the Standard Model Cocktail, Springer Theses (Springer, Cham, 2022) arXiv:2207.01633 [hep-ph] .
- B. Carr and F. Kuhnel, Primordial Black Holes as Dark Matter: Recent Developments, Ann. Rev. Nucl. Part. Sci. 70, 355 (2020), arXiv:2006.02838 [astro-ph.CO] .
- R. Jinno and M. Takimoto, Gravitational Waves from Bubble Dynamics: Beyond the Envelope, JCAP 01, 060, arXiv:1707.03111 [hep-ph] .
- T. Konstandin, Gravitational Radiation from a Bulk Flow Model, JCAP 03, 047, arXiv:1712.06869 [astro-ph.CO] .
- S. W. Hawking, Black Hole Explosions, Nature 248, 30 (1974).
- S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 199 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- B. P. Abbott et al. (LIGO Scientific, Virgo), Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run, Phys. Rev. Lett. 123, 161102 (2019b), arXiv:1904.08976 [astro-ph.CO] .
- S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7, 1888 (1973).
- E. Witten, Cosmological Consequences of a Light Higgs Boson, Nucl. Phys. B 177, 477 (1981).
- R. Hempfling, The Next-To-Minimal Coleman-Weinberg Model, Phys. Lett. B 379, 153 (1996), arXiv:hep-ph/9604278 .
- S. Iso, P. D. Serpico, and K. Shimada, QCD-Electroweak First-Order Phase Transition in a Supercooled Universe, Phys. Rev. Lett. 119, 141301 (2017), arXiv:1704.04955 [hep-ph] .
- B. von Harling and G. Servant, QCD-induced Electroweak Phase Transition, JHEP 01, 159, arXiv:1711.11554 [hep-ph] .
- L. Randall and G. Servant, Gravitational Waves from Warped Spacetime, JHEP 05, 054, arXiv:hep-ph/0607158 .
- R. Jinno and M. Takimoto, Probing a classically conformal B-L model with gravitational waves, Phys. Rev. D95, 015020 (2017), arXiv:1604.05035 [hep-ph] .
- V. Brdar, A. J. Helmboldt, and J. Kubo, Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales, JCAP 02, 021, arXiv:1810.12306 [hep-ph] .
- V. Brdar, A. J. Helmboldt, and M. Lindner, Strong Supercooling as a Consequence of Renormalization Group Consistency, JHEP 12, 158, arXiv:1910.13460 [hep-ph] .
- C. Marzo, L. Marzola, and V. Vaskonen, Phase transition and vacuum stability in the classically conformal B–L model, Eur. Phys. J. C 79, 601 (2019), arXiv:1811.11169 [hep-ph] .
- J. Ellis, M. Lewicki, and V. Vaskonen, Updated predictions for gravitational waves produced in a strongly supercooled phase transition, JCAP 11, 020, arXiv:2007.15586 [astro-ph.CO] .
- I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, JHEP 05, 190, arXiv:1809.01198 [hep-ph] .
- T. Prokopec, J. Rezacek, and B. Świeżewska, Gravitational waves from conformal symmetry breaking, JCAP 02, 009, arXiv:1809.11129 [hep-ph] .
- M. Kierkla, A. Karam, and B. Swiezewska, Conformal Model for Gravitational Waves and Dark Matter: a Status Update, (2022), arXiv:2210.07075 [astro-ph.CO] .
- T. Konstandin and G. Servant, Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale, JCAP 12, 009, arXiv:1104.4791 [hep-ph] .
- T. Hambye, A. Strumia, and D. Teresi, Super-Cool Dark Matter, JHEP 08, 188, arXiv:1805.01473 [hep-ph] .
- I. Baldes, Y. Gouttenoire, and F. Sala, String Fragmentation in Supercooled Confinement and Implications for Dark Matter, JHEP 04, 278, arXiv:2007.08440 [hep-ph] .
- A. Azatov, M. Vanvlasselaer, and W. Yin, Dark Matter production from relativistic bubble walls, JHEP 03, 288, arXiv:2101.05721 [hep-ph] .
- I. Baldes, Y. Gouttenoire, and F. Sala, Hot and Heavy Dark Matter from Supercooling, (2022b), arXiv:2207.05096 [hep-ph] .
- X. Wong and K.-P. Xie, Freeze-in of WIMP dark matter, (2023), arXiv:2304.00908 [hep-ph] .
- T. Konstandin and G. Servant, Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking, JCAP 07, 024, arXiv:1104.4793 [hep-ph] .
- G. Servant, Baryogenesis from Strong CP𝐶𝑃CPitalic_C italic_P Violation and the QCD Axion, Phys. Rev. Lett. 113, 171803 (2014), arXiv:1407.0030 [hep-ph] .
- A. Azatov, M. Vanvlasselaer, and W. Yin, Baryogenesis via relativistic bubble walls, JHEP 10, 043, arXiv:2106.14913 [hep-ph] .
- M. Quiros, Finite Temperature Field Theory and Phase Transitions, in Ictp Summer School in High-Energy Physics and Cosmology (1999) pp. 187–259, arXiv:hep-ph/9901312 .
- M. Hindmarsh and M. Hijazi, Gravitational waves from first order cosmological phase transitions in the Sound Shell Model, JCAP 12, 062, arXiv:1909.10040 [astro-ph.CO] .
- M. S. Turner, E. J. Weinberg, and L. M. Widrow, Bubble Nucleation in First Order Inflation and Other Cosmological Phase Transitions, Phys. Rev. D 46, 2384 (1992).
- H. Deng, Primordial black hole formation by vacuum bubbles. Part II, JCAP 09, 023, arXiv:2006.11907 [astro-ph.CO] .
- A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
- R. Watkins and L. M. Widrow, Aspects of reheating in first order inflation, Nucl. Phys. B 374, 446 (1992).
- E. W. Kolb and A. Riotto, Preheating and symmetry restoration in collisions of vacuum bubbles, Phys. Rev. D 55, 3313 (1997), arXiv:astro-ph/9602095 .
- A. Falkowski and J. M. No, Non-thermal Dark Matter Production from the Electroweak Phase Transition: Multi-TeV WIMPs and ’Baby-Zillas’, JHEP 02, 034, arXiv:1211.5615 [hep-ph] .
- D. Cutting, M. Hindmarsh, and D. J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, Phys. Rev. D 97, 123513 (2018), arXiv:1802.05712 [astro-ph.CO] .
- G. Aarts, G. F. Bonini, and C. Wetterich, On Thermalization in classical scalar field theory, Nucl. Phys. B 587, 403 (2000), arXiv:hep-ph/0003262 .
- R. Micha and I. I. Tkachev, Relativistic turbulence: A Long way from preheating to equilibrium, Phys. Rev. Lett. 90, 121301 (2003), arXiv:hep-ph/0210202 .
- A. Arrizabalaga, J. Smit, and A. Tranberg, Equilibration in phi**4 theory in 3+1 dimensions, Phys. Rev. D 72, 025014 (2005), arXiv:hep-ph/0503287 .
- F. Niedermann and M. S. Sloth, Resolving the Hubble tension with new early dark energy, Phys. Rev. D 102, 063527 (2020), arXiv:2006.06686 [astro-ph.CO] .
- R. Laha, Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ𝛾\gammaitalic_γ -Ray Line, Phys. Rev. Lett. 123, 251101 (2019), arXiv:1906.09994 [astro-ph.HE] .
- B. Dasgupta, R. Laha, and A. Ray, Neutrino and positron constraints on spinning primordial black hole dark matter, Phys. Rev. Lett. 125, 101101 (2020), arXiv:1912.01014 [hep-ph] .
- R. Laha, J. B. Muñoz, and T. R. Slatyer, INTEGRAL constraints on primordial black holes and particle dark matter, Phys. Rev. D 101, 123514 (2020), arXiv:2004.00627 [astro-ph.CO] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.