Papers
Topics
Authors
Recent
2000 character limit reached

Primordial Black Holes from Supercooled Phase Transitions (2305.04942v3)

Published 8 May 2023 in hep-ph and astro-ph.CO

Abstract: Cosmological first-order phase transitions (1stOPTs) are said to be strongly supercooled when the nucleation temperature is much smaller than the critical temperature. These are often encountered in theories that admit a nearly scale-invariant potential, for which the bounce action decreases only logarithmically with temperature. During supercooled 1stOPTs the equation of state of the universe undergoes a rapid and drastic change, transitioning from vacuum-domination to radiation-domination. The statistical variations in bubble nucleation histories imply that distinct causal patches percolate at slightly different times. Patches which percolate the latest undergo the longest vacuum-domination stage and as a consequence develop large over-densities triggering their collapse into primordial black holes (PBHs). We derive an analytical approximation for the probability of a patch to collapse into a PBH as a function of the 1stOPT duration, $\beta{-1}$, and deduce the expected PBH abundance. We find that 1stOPTs which take more than $15\%$ of a Hubble time to complete ($\beta/H \lesssim 7$) produce observable PBHs. Their abundance is independent of the duration of the supercooling phase, in agreement with the de Sitter no hair conjecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (95)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Gwtc-1: a Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by Ligo and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
  2. B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. Soc. 168, 399 (1974).
  3. B. J. Carr and J. E. Lidsey, Primordial Black Holes and Generalized Constraints on Chaotic Inflation, Phys. Rev. D 48, 543 (1993).
  4. P. Ivanov, P. Naselsky, and I. Novikov, Inflation and Primordial Black Holes as Dark Matter, Phys. Rev. D 50, 7173 (1994).
  5. S. W. Hawking, Black Holes from Cosmic Strings, Phys. Lett. B 231, 237 (1989).
  6. R. R. Caldwell and P. Casper, Formation of black holes from collapsed cosmic string loops, Phys. Rev. D 53, 3002 (1996), arXiv:gr-qc/9509012 .
  7. A. C. Jenkins and M. Sakellariadou, Primordial black holes from cusp collapse on cosmic strings,   (2020), arXiv:2006.16249 [astro-ph.CO] .
  8. J. J. Blanco-Pillado, K. D. Olum, and A. Vilenkin, No black holes from cosmic string cusps,   (2021), arXiv:2101.05040 [astro-ph.CO] .
  9. T. Vachaspati, Lunar Mass Black Holes from QCD Axion Cosmology,   (2017), arXiv:1706.03868 [hep-th] .
  10. A. Dolgov and J. Silk, Baryon Isocurvature Fluctuations at Small Scales and Baryonic Dark Matter, Phys. Rev. D 47, 4244 (1993).
  11. K. Kasai, M. Kawasaki, and K. Murai, Revisiting the Affleck-Dine Mechanism for Primordial Black Hole Formation, JCAP 10, 048, arXiv:2205.10148 [astro-ph.CO] .
  12. E. Cotner and A. Kusenko, Primordial black holes from supersymmetry in the early universe, Phys. Rev. Lett. 119, 031103 (2017), arXiv:1612.02529 [astro-ph.CO] .
  13. J. Martin, T. Papanikolaou, and V. Vennin, Primordial black holes from the preheating instability in single-field inflation, JCAP 01, 024, arXiv:1907.04236 [astro-ph.CO] .
  14. M. M. Flores and A. Kusenko, Primordial Black Holes from Long-Range Scalar Forces and Scalar Radiative Cooling, Phys. Rev. Lett. 126, 041101 (2021), arXiv:2008.12456 [astro-ph.CO] .
  15. S. W. Hawking, I. G. Moss, and J. M. Stewart, Bubble Collisions in the Very Early Universe, Phys. Rev. D 26, 2681 (1982).
  16. I. G. Moss, Singularity Formation from Colliding Bubbles, Phys. Rev. D 50, 676 (1994).
  17. A. Ashoorioon, A. Rostami, and J. T. Firouzjaee, Examining the end of inflation with primordial black holes mass distribution and gravitational waves, Phys. Rev. D 103, 123512 (2021), arXiv:2012.02817 [astro-ph.CO] .
  18. M. Crawford and D. N. Schramm, Spontaneous Generation of Density Perturbations in the Early Universe, Nature 298, 538 (1982).
  19. K. Kawana and K.-P. Xie, Primordial Black Holes from a Cosmic Phase Transition: the Collapse of Fermi-Balls, Phys. Lett. B 824, 136791 (2022), arXiv:2106.00111 [astro-ph.CO] .
  20. P. Huang and K.-P. Xie, Primordial black holes from an electroweak phase transition, Phys. Rev. D 105, 115033 (2022), arXiv:2201.07243 [hep-ph] .
  21. J. Garriga, A. Vilenkin, and J. Zhang, Black Holes and the Multiverse, JCAP 02, 064, arXiv:1512.01819 [hep-th] .
  22. H. Deng, J. Garriga, and A. Vilenkin, Primordial Black Hole and Wormhole Formation by Domain Walls, JCAP 04, 050, arXiv:1612.03753 [gr-qc] .
  23. H. Deng and A. Vilenkin, Primordial Black Hole Formation by Vacuum Bubbles, JCAP 12, 044, arXiv:1710.02865 [gr-qc] .
  24. H. Kodama, M. Sasaki, and K. Sato, Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition, Prog. Theor. Phys. 68, 1979 (1982).
  25. S. D. H. Hsu, Black Holes From Extended Inflation, Phys. Lett. B 251, 343 (1990).
  26. K. Hashino, S. Kanemura, and T. Takahashi, Primordial Black Holes as a Probe of Strongly First-Order Electroweak Phase Transition,  (2021), arXiv:2111.13099 [hep-ph] .
  27. K. Kawana, T. Kim, and P. Lu, PBH Formation from Overdensities in Delayed Vacuum Transitions,   (2022), arXiv:2212.14037 [astro-ph.CO] .
  28. M. Lewicki, P. Toczek, and V. Vaskonen, Primordial black holes from strong first-order phase transitions,   (2023), arXiv:2305.04924 [astro-ph.CO] .
  29. E. W. Kolb and M. S. Turner, The Early Universe, Vol. 69 (1990).
  30. A. H. Guth and S. H. H. Tye, Phase Transitions and Magnetic Monopole Production in the Very Early Universe, Phys. Rev. Lett. 44, 631 (1980), [Erratum: Phys.Rev.Lett. 44, 963 (1980)].
  31. B. J. Carr, The Primordial Black Hole Mass Spectrum, Astrophys. J. 201, 1 (1975).
  32. I. Musco and J. C. Miller, Primordial black hole formation in the early universe: critical behaviour and self-similarity, Class. Quant. Grav. 30, 145009 (2013), arXiv:1201.2379 [gr-qc] .
  33. R. M. Wald, Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D 28, 2118 (1983).
  34. A. Escrivà and A. E. Romano, Effects of the shape of curvature peaks on the size of primordial black holes, JCAP 05, 066, arXiv:2103.03867 [gr-qc] .
  35. Y. Ali-Haïmoud and M. Kamionkowski, Cosmic microwave background limits on accreting primordial black holes, Phys. Rev. D 95, 043534 (2017), arXiv:1612.05644 [astro-ph.CO] .
  36. V. Poulin, J. Lesgourgues, and P. D. Serpico, Cosmological Constraints on Exotic Injection of Electromagnetic Energy, JCAP 03, 043, arXiv:1610.10051 [astro-ph.CO] .
  37. C. Alcock et al. (MACHO), The MACHO project: Microlensing results from 5.7 years of LMC observations, Astrophys. J. 542, 281 (2000), arXiv:astro-ph/0001272 .
  38. P. Tisserand et al. (EROS-2), Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds, Astron. Astrophys. 469, 387 (2007), arXiv:astro-ph/0607207 .
  39. H. Niikura et al., Microlensing Constraints on Primordial Black Holes with Subaru/Hsc Andromeda Observations, Nature Astron. 3, 524 (2019b), arXiv:1701.02151 [astro-ph.CO] .
  40. M. Boudaud and M. Cirelli, Voyager 1 e±superscript𝑒plus-or-minuse^{\pm}italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT Further Constrain Primordial Black Holes as Dark Matter, Phys. Rev. Lett. 122, 041104 (2019), arXiv:1807.03075 [astro-ph.HE] .
  41. S. Sugiyama, M. Takada, and A. Kusenko, Possible Evidence of QCD Axion Stars in Hsc and Ogle Microlensing Events,   (2021), arXiv:2108.03063 [hep-ph] .
  42. Z. Arzoumanian et al. (NANOGrav), Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset, Phys. Rev. Lett. 127, 251302 (2021), arXiv:2104.13930 [astro-ph.CO] .
  43. S. Chen et al., Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search 10.1093/mnras/stab2833 (2021), arXiv:2110.13184 [astro-ph.HE] .
  44. B. Goncharov et al., On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the Parkes Pulsar Timing Array 10.3847/2041-8213/ac17f4 (2021), arXiv:2107.12112 [astro-ph.HE] .
  45. J. Antoniadis et al., The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background, Mon. Not. Roy. Astron. Soc. 510, 4873 (2022), arXiv:2201.03980 [astro-ph.HE] .
  46. V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory (World Scientific, Singapore, 2017).
  47. C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04, 001, arXiv:1512.06239 [astro-ph.CO] .
  48. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03, 024, arXiv:1910.13125 [astro-ph.CO] .
  49. Y. Gouttenoire, R. Jinno, and F. Sala, Friction pressure on relativistic bubble walls, JHEP 05, 004, arXiv:2112.07686 [hep-ph] .
  50. Y. Gouttenoire, Beyond the Standard Model Cocktail, Springer Theses (Springer, Cham, 2022) arXiv:2207.01633 [hep-ph] .
  51. B. Carr and F. Kuhnel, Primordial Black Holes as Dark Matter: Recent Developments, Ann. Rev. Nucl. Part. Sci. 70, 355 (2020), arXiv:2006.02838 [astro-ph.CO] .
  52. R. Jinno and M. Takimoto, Gravitational Waves from Bubble Dynamics: Beyond the Envelope, JCAP 01, 060, arXiv:1707.03111 [hep-ph] .
  53. T. Konstandin, Gravitational Radiation from a Bulk Flow Model, JCAP 03, 047, arXiv:1712.06869 [astro-ph.CO] .
  54. S. W. Hawking, Black Hole Explosions, Nature 248, 30 (1974).
  55. S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 199 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
  56. B. P. Abbott et al. (LIGO Scientific, Virgo), Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run, Phys. Rev. Lett. 123, 161102 (2019b), arXiv:1904.08976 [astro-ph.CO] .
  57. S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7, 1888 (1973).
  58. E. Witten, Cosmological Consequences of a Light Higgs Boson, Nucl. Phys. B 177, 477 (1981).
  59. R. Hempfling, The Next-To-Minimal Coleman-Weinberg Model, Phys. Lett. B 379, 153 (1996), arXiv:hep-ph/9604278 .
  60. S. Iso, P. D. Serpico, and K. Shimada, QCD-Electroweak First-Order Phase Transition in a Supercooled Universe, Phys. Rev. Lett. 119, 141301 (2017), arXiv:1704.04955 [hep-ph] .
  61. B. von Harling and G. Servant, QCD-induced Electroweak Phase Transition, JHEP 01, 159, arXiv:1711.11554 [hep-ph] .
  62. L. Randall and G. Servant, Gravitational Waves from Warped Spacetime, JHEP 05, 054, arXiv:hep-ph/0607158 .
  63. R. Jinno and M. Takimoto, Probing a classically conformal B-L model with gravitational waves, Phys. Rev. D95, 015020 (2017), arXiv:1604.05035 [hep-ph] .
  64. V. Brdar, A. J. Helmboldt, and J. Kubo, Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales, JCAP 02, 021, arXiv:1810.12306 [hep-ph] .
  65. V. Brdar, A. J. Helmboldt, and M. Lindner, Strong Supercooling as a Consequence of Renormalization Group Consistency, JHEP 12, 158, arXiv:1910.13460 [hep-ph] .
  66. C. Marzo, L. Marzola, and V. Vaskonen, Phase transition and vacuum stability in the classically conformal B–L model, Eur. Phys. J. C 79, 601 (2019), arXiv:1811.11169 [hep-ph] .
  67. J. Ellis, M. Lewicki, and V. Vaskonen, Updated predictions for gravitational waves produced in a strongly supercooled phase transition, JCAP 11, 020, arXiv:2007.15586 [astro-ph.CO] .
  68. I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, JHEP 05, 190, arXiv:1809.01198 [hep-ph] .
  69. T. Prokopec, J. Rezacek, and B. Świeżewska, Gravitational waves from conformal symmetry breaking, JCAP 02, 009, arXiv:1809.11129 [hep-ph] .
  70. M. Kierkla, A. Karam, and B. Swiezewska, Conformal Model for Gravitational Waves and Dark Matter: a Status Update,   (2022), arXiv:2210.07075 [astro-ph.CO] .
  71. T. Konstandin and G. Servant, Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale, JCAP 12, 009, arXiv:1104.4791 [hep-ph] .
  72. T. Hambye, A. Strumia, and D. Teresi, Super-Cool Dark Matter, JHEP 08, 188, arXiv:1805.01473 [hep-ph] .
  73. I. Baldes, Y. Gouttenoire, and F. Sala, String Fragmentation in Supercooled Confinement and Implications for Dark Matter, JHEP 04, 278, arXiv:2007.08440 [hep-ph] .
  74. A. Azatov, M. Vanvlasselaer, and W. Yin, Dark Matter production from relativistic bubble walls, JHEP 03, 288, arXiv:2101.05721 [hep-ph] .
  75. I. Baldes, Y. Gouttenoire, and F. Sala, Hot and Heavy Dark Matter from Supercooling,   (2022b), arXiv:2207.05096 [hep-ph] .
  76. X. Wong and K.-P. Xie, Freeze-in of WIMP dark matter,   (2023), arXiv:2304.00908 [hep-ph] .
  77. T. Konstandin and G. Servant, Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking, JCAP 07, 024, arXiv:1104.4793 [hep-ph] .
  78. G. Servant, Baryogenesis from Strong C⁢P𝐶𝑃CPitalic_C italic_P Violation and the QCD Axion, Phys. Rev. Lett. 113, 171803 (2014), arXiv:1407.0030 [hep-ph] .
  79. A. Azatov, M. Vanvlasselaer, and W. Yin, Baryogenesis via relativistic bubble walls, JHEP 10, 043, arXiv:2106.14913 [hep-ph] .
  80. M. Quiros, Finite Temperature Field Theory and Phase Transitions, in Ictp Summer School in High-Energy Physics and Cosmology (1999) pp. 187–259, arXiv:hep-ph/9901312 .
  81. M. Hindmarsh and M. Hijazi, Gravitational waves from first order cosmological phase transitions in the Sound Shell Model, JCAP 12, 062, arXiv:1909.10040 [astro-ph.CO] .
  82. M. S. Turner, E. J. Weinberg, and L. M. Widrow, Bubble Nucleation in First Order Inflation and Other Cosmological Phase Transitions, Phys. Rev. D 46, 2384 (1992).
  83. H. Deng, Primordial black hole formation by vacuum bubbles. Part II, JCAP 09, 023, arXiv:2006.11907 [astro-ph.CO] .
  84. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
  85. R. Watkins and L. M. Widrow, Aspects of reheating in first order inflation, Nucl. Phys. B 374, 446 (1992).
  86. E. W. Kolb and A. Riotto, Preheating and symmetry restoration in collisions of vacuum bubbles, Phys. Rev. D 55, 3313 (1997), arXiv:astro-ph/9602095 .
  87. A. Falkowski and J. M. No, Non-thermal Dark Matter Production from the Electroweak Phase Transition: Multi-TeV WIMPs and ’Baby-Zillas’, JHEP 02, 034, arXiv:1211.5615 [hep-ph] .
  88. D. Cutting, M. Hindmarsh, and D. J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, Phys. Rev. D 97, 123513 (2018), arXiv:1802.05712 [astro-ph.CO] .
  89. G. Aarts, G. F. Bonini, and C. Wetterich, On Thermalization in classical scalar field theory, Nucl. Phys. B 587, 403 (2000), arXiv:hep-ph/0003262 .
  90. R. Micha and I. I. Tkachev, Relativistic turbulence: A Long way from preheating to equilibrium, Phys. Rev. Lett. 90, 121301 (2003), arXiv:hep-ph/0210202 .
  91. A. Arrizabalaga, J. Smit, and A. Tranberg, Equilibration in phi**4 theory in 3+1 dimensions, Phys. Rev. D 72, 025014 (2005), arXiv:hep-ph/0503287 .
  92. F. Niedermann and M. S. Sloth, Resolving the Hubble tension with new early dark energy, Phys. Rev. D 102, 063527 (2020), arXiv:2006.06686 [astro-ph.CO] .
  93. R. Laha, Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ𝛾\gammaitalic_γ -Ray Line, Phys. Rev. Lett. 123, 251101 (2019), arXiv:1906.09994 [astro-ph.HE] .
  94. B. Dasgupta, R. Laha, and A. Ray, Neutrino and positron constraints on spinning primordial black hole dark matter, Phys. Rev. Lett. 125, 101101 (2020), arXiv:1912.01014 [hep-ph] .
  95. R. Laha, J. B. Muñoz, and T. R. Slatyer, INTEGRAL constraints on primordial black holes and particle dark matter, Phys. Rev. D 101, 123514 (2020), arXiv:2004.00627 [astro-ph.CO] .
Citations (43)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.