Papers
Topics
Authors
Recent
Search
2000 character limit reached

Leveraging Deep Learning and Digital Twins to Improve Energy Performance of Buildings

Published 8 May 2023 in cs.LG, cs.SY, and eess.SY | (2305.04498v3)

Abstract: Digital transformation in buildings accumulates massive operational data, which calls for smart solutions to utilize these data to improve energy performance. This study has proposed a solution, namely Deep Energy Twin, for integrating deep learning and digital twins to better understand building energy use and identify the potential for improving energy efficiency. Ontology was adopted to create parametric digital twins to provide consistency of data format across different systems in a building. Based on created digital twins and collected data, deep learning methods were used for performing data analytics to identify patterns and provide insights for energy optimization. As a demonstration, a case study was conducted in a public historic building in Norrk\"oping, Sweden, to compare the performance of state-of-the-art deep learning architectures in building energy forecasting.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.