Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structural and Statistical Texture Knowledge Distillation for Semantic Segmentation (2305.03944v3)

Published 6 May 2023 in cs.CV

Abstract: Existing knowledge distillation works for semantic segmentation mainly focus on transferring high-level contextual knowledge from teacher to student. However, low-level texture knowledge is also of vital importance for characterizing the local structural pattern and global statistical property, such as boundary, smoothness, regularity and color contrast, which may not be well addressed by high-level deep features. In this paper, we are intended to take full advantage of both structural and statistical texture knowledge and propose a novel Structural and Statistical Texture Knowledge Distillation (SSTKD) framework for semantic segmentation. Specifically, for structural texture knowledge, we introduce a Contourlet Decomposition Module (CDM) that decomposes low-level features with iterative Laplacian pyramid and directional filter bank to mine the structural texture knowledge. For statistical knowledge, we propose a Denoised Texture Intensity Equalization Module (DTIEM) to adaptively extract and enhance statistical texture knowledge through heuristics iterative quantization and denoised operation. Finally, each knowledge learning is supervised by an individual loss function, forcing the student network to mimic the teacher better from a broader perspective. Experiments show that the proposed method achieves state-of-the-art performance on Cityscapes, Pascal VOC 2012 and ADE20K datasets.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.