Data-inspired modeling of accidents in traffic flow networks using the Hawkes process
Abstract: We consider hyperbolic partial differential equations (PDEs) for a dynamic description of the traffic behavior in road networks. These equations are coupled to a Hawkes process that models traffic accidents taking into account their self-excitation property which means that accidents are more likely in areas in which another accident just occurred. We discuss how both model components interact and influence each other. A data analysis reveals the self-excitation property of accidents and determines further parameters. Numerical simulations using risk measures underline and conclude the discussion of traffic accident effects in our model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.