Papers
Topics
Authors
Recent
2000 character limit reached

Probing the onset of maximal entanglement inside the proton in diffractive DIS (2305.03069v2)

Published 4 May 2023 in hep-ph, hep-ex, nucl-ex, nucl-th, and quant-ph

Abstract: It has been proposed that at small Bjorken $x$, or equivalently at high energy, hadrons represent maximally entangled states of quarks and gluons. This conjecture is in accord with experimental data from the electron-proton collider HERA at the smallest accessible $x$. In this Letter, we propose to study the onset of the maximal entanglement inside the proton using Diffractive Deep Inelastic Scattering. It is shown that the data collected by the H1 Collaboration at HERA allows to probe the transition to the maximal entanglement regime. By relating the entanglement entropy to the entropy of final state hadrons, we find a good agreement with the H1 data using both the exact entropy formula as well as its asymptotic expansion which indicates the presence of a nearly maximally-entangled state. Finally, future opportunities at the Electron Ion Collider are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. A. Accardi et al., Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52, 268 (2016), arXiv:1212.1701 [nucl-ex] .
  2. I. R. Klebanov, D. Kutasov, and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796, 274 (2008), arXiv:0709.2140 [hep-th] .
  3. D. E. Kharzeev and E. M. Levin, Deep inelastic scattering as a probe of entanglement, Phys. Rev. D 95, 114008 (2017), arXiv:1702.03489 [hep-ph] .
  4. N. Mueller, A. Tarasov, and R. Venugopalan, Deeply inelastic scattering structure functions on a hybrid quantum computer, Phys. Rev. D 102, 016007 (2020), arXiv:1908.07051 [hep-th] .
  5. H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS), Parton physics on a quantum computer, Phys. Rev. Res. 2, 013272 (2020), arXiv:1908.10439 [hep-lat] .
  6. J. Liu and Y. Xin, Quantum simulation of quantum field theories as quantum chemistry, JHEP 12, 011, arXiv:2004.13234 [hep-th] .
  7. Z. Davoudi, I. Raychowdhury, and A. Shaw, Search for Efficient Formulations for Hamiltonian Simulation of non-Abelian Lattice Gauge Theories,   (2020), arXiv:2009.11802 [hep-lat] .
  8. J. a. Barata and C. A. Salgado, A quantum strategy to compute the jet quenching parameter q^^𝑞\hat{q}over^ start_ARG italic_q end_ARG,  (2021), arXiv:2104.04661 [hep-ph] .
  9. D. Beck et al., Quantum Information Science and Technology for Nuclear Physics. Input into U.S. Long-Range Planning, 2023 (2023) arXiv:2303.00113 [nucl-ex] .
  10. J. D. Bjorken and E. A. Paschos, Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon, Phys. Rev. 185, 1975 (1969).
  11. R. P. Feynman, The behavior of hadron collisions at extreme energies, Conf. Proc. C 690905, 237 (1969).
  12. V. N. Gribov, A REGGEON DIAGRAM TECHNIQUE, Zh. Eksp. Teor. Fiz. 53, 654 (1967).
  13. Z. Tu, D. E. Kharzeev, and T. Ullrich, Einstein-Podolsky-Rosen Paradox and Quantum Entanglement at Subnucleonic Scales, Phys. Rev. Lett. 124, 062001 (2020), arXiv:1904.11974 [hep-ph] .
  14. D. E. Kharzeev, Quantum information approach to high energy interactions, Phil. Trans. A. Math. Phys. Eng. Sci. 380, 20210063 (2021), arXiv:2108.08792 [hep-ph] .
  15. K. Kutak, Gluon saturation and entropy production in proton–proton collisions, Phys. Lett. B 705, 217 (2011), arXiv:1103.3654 [hep-ph] .
  16. R. Peschanski, Dynamical entropy of dense QCD states, Phys. Rev. D 87, 034042 (2013), arXiv:1211.6911 [hep-ph] .
  17. A. Stoffers and I. Zahed, Holographic Pomeron and Entropy, Phys. Rev. D 88, 025038 (2013), arXiv:1211.3077 [nucl-th] .
  18. A. Kovner and M. Lublinsky, Entanglement entropy and entropy production in the Color Glass Condensate framework, Phys. Rev. D 92, 034016 (2015), arXiv:1506.05394 [hep-ph] .
  19. J. Berges, S. Floerchinger, and R. Venugopalan, Dynamics of entanglement in expanding quantum fields, JHEP 04, 145, arXiv:1712.09362 [hep-th] .
  20. G. Dvali and R. Venugopalan, Classicalization and unitarization of wee partons in QCD and gravity: The CGC-black hole correspondence, Phys. Rev. D 105, 056026 (2022), arXiv:2106.11989 [hep-th] .
  21. D. Neill and W. J. Waalewijn, Entropy of a Jet, Phys. Rev. Lett. 123, 142001 (2019), arXiv:1811.01021 [hep-ph] .
  22. Y. Liu, M. A. Nowak, and I. Zahed, Entanglement entropy and flow in two-dimensional QCD: Parton and string duality, Phys. Rev. D 105, 114027 (2022a), arXiv:2202.02612 [hep-ph] .
  23. Y. Liu, M. A. Nowak, and I. Zahed, Rapidity evolution of the entanglement entropy in quarkonium: Parton and string duality, Phys. Rev. D 105, 114028 (2022b), arXiv:2203.00739 [hep-ph] .
  24. A. Dumitru and E. Kolbusz, Quark and gluon entanglement in the proton on the light cone at intermediate x𝑥xitalic_x, Phys. Rev. D 105, 074030 (2022), arXiv:2202.01803 [hep-ph] .
  25. A. Dumitru and E. Kolbusz, Quark pair angular correlations in the proton: entropy versus entanglement negativity,   (2023), arXiv:2303.07408 [hep-ph] .
  26. P. J. Ehlers, Entanglement between Valence and Sea Quarks in Hadrons of 1+1 Dimensional QCD,   (2022), arXiv:2209.09867 [hep-ph] .
  27. H. Duan, A. Kovner, and V. V. Skokov, Classical Entanglement and Entropy,   (2023), arXiv:2301.05735 [quant-ph] .
  28. Y. Liu, M. A. Nowak, and I. Zahed, Universality of Koba-Nielsen-Olesen scaling in QCD at high energy and entanglement,   (2023), arXiv:2302.01380 [hep-ph] .
  29. P. Asadi and V. Vaidya, 1+1D Hadrons Minimize their Biparton Renyi Free Energy,   (2023), arXiv:2301.03611 [hep-th] .
  30. Y. Liu, M. A. Nowak, and I. Zahed, Mueller’s dipole wave function in QCD: emergent KNO scaling in the double logarithm limit,   (2022c), arXiv:2211.05169 [hep-ph] .
  31. W. Kou, X. Wang, and X. Chen, Page entropy of a proton system in deep inelastic scattering at small x, Phys. Rev. D 106, 096027 (2022), arXiv:2208.07521 [hep-ph] .
  32. A. Dumitru, A. Kovner, and V. V. Skokov, Entanglement entropy of the proton in coordinate space,   (2023), arXiv:2304.08564 [hep-ph] .
  33. M. Hentschinski, K. Kutak, and R. Straka, Maximally entangled proton and charged hadron multiplicity in Deep Inelastic Scattering, Eur. Phys. J. C 82, 1147 (2022), arXiv:2207.09430 [hep-ph] .
  34. D. E. Kharzeev and E. Levin, Deep inelastic scattering as a probe of entanglement: Confronting experimental data, Phys. Rev. D 104, L031503 (2021), arXiv:2102.09773 [hep-ph] .
  35. M. Hentschinski and K. Kutak, Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data, Eur. Phys. J. C 82, 111 (2022), arXiv:2110.06156 [hep-ph] .
  36. V. Andreev et al. (H1), Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to entanglement entropy of partons, Eur. Phys. J. C 81, 212 (2021), arXiv:2011.01812 [hep-ex] .
  37. G. Wolf, Review of High Energy Diffraction in Real and Virtual Photon Proton scattering at HERA, Rept. Prog. Phys. 73, 116202 (2010), arXiv:0907.1217 [hep-ex] .
  38. R. Peschanski and S. Seki, Evaluation of Entanglement Entropy in High Energy Elastic Scattering, Phys. Rev. D 100, 076012 (2019), arXiv:1906.09696 [hep-th] .
  39. Y. V. Kovchegov and E. Levin, Diffractive dissociation including multiple pomeron exchanges in high parton density QCD, Nucl. Phys. B 577, 221 (2000), arXiv:hep-ph/9911523 .
  40. M. Hentschinski, H. Weigert, and A. Schafer, Extension of the color glass condensate approach to diffractive reactions, Phys. Rev. D 73, 051501 (2006), arXiv:hep-ph/0509272 .
  41. A. H. Mueller and S. Munier, Rapidity gap distribution in diffractive deep-inelastic scattering and parton genealogy, Phys. Rev. D 98, 034021 (2018), arXiv:1805.02847 [hep-ph] .
  42. A. D. Le, A. H. Mueller, and S. Munier, Analytical asymptotics for hard diffraction, Phys. Rev. D 104, 034026 (2021), arXiv:2103.10088 [hep-ph] .
  43. A. H. Mueller, Unitarity and the BFKL pomeron, Nucl. Phys. B 437, 107 (1995), arXiv:hep-ph/9408245 .
  44. E. Levin and M. Lublinsky, A Linear evolution for nonlinear dynamics and correlations in realistic nuclei, Nucl. Phys. A 730, 191 (2004), arXiv:hep-ph/0308279 .
  45. C. Adloff et al. (H1), Multiplicity structure of the hadronic final state in diffractive deep inelastic scattering at HERA, Eur. Phys. J. C 5, 439 (1998), arXiv:hep-ex/9804012 .
  46. S. Aid et al. (H1), Charged particle multiplicities in deep inelastic scattering at HERA, Z. Phys. C 72, 573 (1996), arXiv:hep-ex/9608011 .
  47. M. Goharipour, H. Khanpour, and V. Guzey, First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the xFitter framework, Eur. Phys. J. C 78, 309 (2018), arXiv:1802.01363 [hep-ph] .
  48. Y. L. Dokshitzer, V. A. Khoze, and S. I. Troian, On the concept of local parton hadron duality, J. Phys. G 17, 1585 (1991).
  49. T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05, 026, arXiv:hep-ph/0603175 .
  50. J. C. Collins, D. E. Soper, and G. F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5, 1 (1989), arXiv:hep-ph/0409313 .
  51. P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74, 3024 (2014), arXiv:1404.5630 [hep-ph] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.