2000 character limit reached
Experimental Design for Any $p$-Norm (2305.01942v1)
Published 3 May 2023 in cs.DS, cs.LG, stat.CO, and stat.ML
Abstract: We consider a general $p$-norm objective for experimental design problems that captures some well-studied objectives (D/A/E-design) as special cases. We prove that a randomized local search approach provides a unified algorithm to solve this problem for all $p$. This provides the first approximation algorithm for the general $p$-norm objective, and a nice interpolation of the best known bounds of the special cases.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.