Papers
Topics
Authors
Recent
2000 character limit reached

Accelerating Neural Self-Improvement via Bootstrapping

Published 2 May 2023 in cs.LG | (2305.01547v1)

Abstract: Few-shot learning with sequence-processing neural networks (NNs) has recently attracted a new wave of attention in the context of LLMs. In the standard N-way K-shot learning setting, an NN is explicitly optimised to learn to classify unlabelled inputs by observing a sequence of NK labelled examples. This pressures the NN to learn a learning algorithm that achieves optimal performance, given the limited number of training examples. Here we study an auxiliary loss that encourages further acceleration of few-shot learning, by applying recently proposed bootstrapped meta-learning to NN few-shot learners: we optimise the K-shot learner to match its own performance achievable by observing more than NK examples, using only NK examples. Promising results are obtained on the standard Mini-ImageNet dataset. Our code is public.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.