Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Black Holes with Scalar Hair in Three Dimensions (2305.00686v3)

Published 1 May 2023 in gr-qc

Abstract: Three - dimensional static and spinning black hole solutions of the Einstein-Klein-Gordon system are obtained for a particular scalar field configuration. At large distances, and for small scalar field, the solutions reduce to the BTZ black hole. The scalar field dresses the black hole with secondary scalar hair, since the scalar charge is related to the conserved black hole mass and is not an independent charge. A self interacting potential is included, containing a mass term that is above the Breitenlohner-Freedman bound in three dimensions. Independence of the scalar potential from the conserved black hole charges, imposes fixed mass and angular momentum to scalar charge ratios. The thermodynamic properties as well as the energy conditions of the black hole are analysed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. S. Deser, R. Jackiw and G. ’t Hooft, “Three-Dimensional Einstein Gravity: Dynamics of Flat Space,” Annals Phys. 152 (1984), 220
  2. M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69 (1992), 1849-1851 [arXiv:hep-th/9204099 [hep-th]].
  3. M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev. D 48 (1993), 1506-1525 [erratum: Phys. Rev. D 88 (2013), 069902] [arXiv:gr-qc/9302012 [gr-qc]].
  4. S. Carlip, “The (2+1)-Dimensional black hole,” Class. Quant. Grav. 12 (1995), 2853-2880 [arXiv:gr-qc/9506079 [gr-qc]].
  5. C. Martínez and J. Zanelli, “Conformally dressed black hole in (2+1)-dimensions,” Phys. Rev. D 54, 3830 (1996) [gr-qc/9604021].
  6. M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, “Black holes and asymptotics of 2+1 gravity coupled to a scalar field,” Phys. Rev. D 65, 104007 (2002) [hep-th/0201170].
  7. F. Correa, C. Martínez and R. Troncoso, “Scalar solitons and the microscopic entropy of hairy black holes in three dimensions,” JHEP 1101, 034 (2011). [arXiv:1010.1259 [hep-th]].
  8. F. Correa, C. Martínez and R. Troncoso, “Hairy Black Hole Entropy and the Role of Solitons in Three Dimensions,” JHEP 1202, 136 (2012). [arXiv:1112.6198 [hep-th]].
  9. F. Correa, A. Faúndez and C. Martínez, “Rotating hairy black hole and its microscopic entropy in three space-time dimensions,” Phys. Rev. D 87, 027502 (2013) [arXiv:1211.4878 [hep-th]].
  10. M. Natsuume and T. Okamura, “Entropy for asymptotically AdS(3) black holes,” Phys. Rev. D 62, 064027 (2000) [hep-th/9911062].
  11. J. Aparício, D. Grumiller, E. Lopez, I. Papadimitriou and S. Stricker, “Bootstrapping gravity solutions,” JHEP 1305, 128 (2013) [arXiv:1212.3609 [hep-th]].
  12. W. Xu, L. Zhao and D. -C. Zou, “Three - dimensional rotating hairy black holes, asymptotics and thermodynamics,” arXiv:1406.7153 [gr-qc].
  13. M. Cardenas, O. Fuentealba and C. Martínez, “Three-dimensional black holes with conformally coupled scalar and gauge fields,” Phys. Rev. D 90, no.12, 124072 (2014) [arXiv:1408.1401 [hep-th]].
  14. W. Xu and D. C. Zou, “(2+1)21(2+1)( 2 + 1 ) -Dimensional charged black holes with scalar hair in Einstein–Power–Maxwell Theory,” Gen. Rel. Grav. 49, no.6, 73 (2017) [arXiv:1408.1998 [hep-th]].
  15. W. Xu and L. Zhao, “Charged black hole with a scalar hair in (2+1) dimensions,” Phys. Rev. D 87 (2013) no.12, 124008 [arXiv:1305.5446 [gr-qc]].
  16. Z. Y. Tang, Y. C. Ong, B. Wang and E. Papantonopoulos, “General black hole solutions in ( 2+1 )-dimensions with a scalar field non - minimally coupled to gravity,” Phys. Rev. D 100, no.2, 024003 (2019) [arXiv:1901.07310 [gr-qc]].
  17. P. A. González, M. Olivares, E. Papantonopoulos and Y. Vásquez, “Motion and trajectories of photons in a three-dimensional rotating Hořava-AdS black hole,” Phys. Rev. D 101, no.4, 044018 (2020) [arXiv:1912.00946 [gr-qc]].
  18. R. Bécar, P. A. González, E. Papantonopoulos and Y. Vásquez, “Quasinormal modes of three-dimensional rotating Horˇˇ𝑟\check{r}overroman_ˇ start_ARG italic_r end_ARGava AdS black hole and the approach to thermal equilibrium,” Eur. Phys. J. C 80, no.7, 600 (2020) [arXiv:1906.06654 [gr-qc]].
  19. K. C. K. Chan and R. B. Mann, “Spinning black holes in (2+1)-dimensional string and dilaton gravity,” Phys. Lett. B 371 (1996), 199-205 [arXiv:gr-qc/9510069 [gr-qc]].
  20. K. C. K. Chan, “Modifications of the BTZ black hole by a dilaton / scalar,” Phys. Rev. D 55, 3564-3574 (1997) [arXiv:gr-qc/9603038 [gr-qc]].
  21. R. Yamazaki and D. Ida, “Black holes in three-dimensional Einstein-Born-Infeld dilaton theory,” Phys. Rev. D 64, 024009 (2001) [arXiv:gr-qc/0105092 [gr-qc]].
  22. S. Hossein Hendi, B. Eslam Panah, S. Panahiyan and M. Hassaine, “BTZ dilatonic black holes coupled to Maxwell and Born-Infeld electrodynamics,” Phys. Rev. D 98, no.8, 084006 (2018) [arXiv:1712.04328 [physics.gen-ph]].
  23. M. Dehghani, “Thermodynamics of novel charged dilatonic BTZ black holes,” Phys. Lett. B 773, 105-111 (2017) doi:10.1016/j.physletb.2017.08.003
  24. M. Dehghani, “Nonlinearly charged three-dimensional black holes in the Einstein-dilaton gravity theory,” Eur. Phys. J. Plus 133, no.11, 474 (2018); M. B. Tataryn and M. M. Stetsko, “Three-dimensional slowly rotating black hole in Einstein-power-Maxwell theory,” Int. J. Mod. Phys. D 29, no.16, 2050111 (2020); S. H. Hendi, B. Eslam Panah, S. Panahiyan and A. Sheykhi, “Dilatonic BTZ black holes with power-law field,” Phys. Lett. B 767, 214-225 (2017) [arXiv:1703.03403 [gr-qc]]; T. Karakasis, E. Papantonopoulos, Z. Y. Tang and B. Wang, “Rotating (2+1)-dimensional black holes in Einstein-Maxwell-dilaton theory,” Phys. Rev. D 107 (2023) no.2, 024043 [arXiv:2210.15704 [gr-qc]].
  25. M. Dehghani, “Thermodynamics of (2+1)-dimensional black holes in Einstein-Maxwell-dilaton gravity,” Phys. Rev. D 96, no.4, 044014 (2017)
  26. G. G. L. Nashed and A. Sheykhi, “New black hole solutions in three-dimensional f⁢(R)𝑓𝑅\mathit{f(R)}italic_f ( italic_R ) gravity,” [arXiv:2110.02071 [physics.gen-ph]].
  27. Z. Y. Tang, B. Wang and E. Papantonopoulos, “Exact charged black hole solutions in D𝐷Ditalic_D-dimensions in f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity,” Eur. Phys. J. C 81 (2021) no.4, 346 [arXiv:1911.06988 [gr-qc]].
  28. S. H. Hendi, “(2+1)-Dimensional Solutions in F⁢(R)𝐹𝑅F(R)italic_F ( italic_R ) Gravity,” Int. J. Theor. Phys. 53 (2014) no.12, 4170-4181 [arXiv:1410.7527 [gr-qc]].
  29. S. H. Hendi, B. Eslam Panah and R. Saffari, “Exact solutions of three-dimensional black holes: Einstein gravity versus F⁢(R)𝐹𝑅F(R)italic_F ( italic_R ) gravity,” Int. J. Mod. Phys. D 23 (2014) no.11, 1450088 [arXiv:1408.5570 [hep-th]].
  30. R. A. Konoplya and A. Zhidenko, “BTZ black holes with higher curvature corrections in the 3D Einstein-Lovelock gravity,” Phys. Rev. D 102 (2020) no.6, 064004 [arXiv:2003.12171 [gr-qc]].
  31. L. Ma and H. Lu, “Vacua and Exact Solutions in Lower-D𝐷Ditalic_D Limits of EGB,” Eur. Phys. J. C 80 (2020) no.12, 1209 [arXiv:2004.14738 [gr-qc]].
  32. R. A. Hennigar, D. Kubiznak, R. B. Mann and C. Pollack, “Lower-dimensional Gauss–Bonnet gravity and BTZ black holes,” Phys. Lett. B 808 (2020), 135657 [arXiv:2004.12995 [gr-qc]].
  33. R. A. Hennigar, D. Kubiznak and R. B. Mann, “Rotating Gauss-Bonnet BTZ Black Holes,” Class. Quant. Grav. 38 (2021) no.3, 03LT01 [arXiv:2005.13732 [gr-qc]].
  34. K. Jusufi, M. Jamil and A. Sheykhi, “Regular 3D Gauss-Bonnet black holes with finite electrodynamics,” [arXiv:2302.10799 [physics.gen-ph]].
  35. M. Bravo-Gaete and M. Hassaine, “Thermodynamics of a BTZ black hole solution with an Horndeski source,” Phys. Rev. D 90 (2014) no.2, 024008 [arXiv:1405.4935 [hep-th]].
  36. O. Baake, M. F. Bravo Gaete and M. Hassaine, “Spinning black holes for generalized scalar tensor theories in three dimensions,” Phys. Rev. D 102 (2020) no.2, 024088 [arXiv:2005.10869 [hep-th]].
  37. T. Karakasis, E. Papantonopoulos, Z. Y. Tang and B. Wang, “Black holes of (2+1)-dimensional f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity coupled to a scalar field,” Phys. Rev. D 103 (2021) no.6, 064063 [arXiv:2101.06410 [gr-qc]].
  38. T. Karakasis, E. Papantonopoulos, Z. Y. Tang and B. Wang, “(2+1)-dimensional black holes in f(R,ϕitalic-ϕ\phiitalic_ϕ) gravity,” Phys. Rev. D 105 (2022) no.4, 044038 [arXiv:2201.00035 [gr-qc]].
  39. A. Bakopoulos and T. Nakas, “Analytic and asymptotically flat hairy (ultra-compact) black-hole solutions and their axial perturbations,” JHEP 04 (2022), 096 [arXiv:2107.05656 [gr-qc]].
  40. C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” Int. J. Mod. Phys. D 24 (2015) no.09, 1542014 [arXiv:1504.08209 [gr-qc]].
  41. P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,” Annals Phys. 144 (1982), 249
  42. L. Mezincescu and P. K. Townsend, “Stability at a Local Maximum in Higher Dimensional Anti-de Sitter Space and Applications to Supergravity,” Annals Phys. 160 (1985), 406
  43. C. Desa, W. Ccuiro and D. Choque, “Exact hairy black holes asymptotically A⁢d⁢S2+1𝐴𝑑subscript𝑆21AdS_{2+1}italic_A italic_d italic_S start_POSTSUBSCRIPT 2 + 1 end_POSTSUBSCRIPT,” [arXiv:2210.06421 [hep-th]].
  44. A. Bakopoulos and T. Nakas, “Novel exact ultra-compact and ultra-sparse hairy black holes emanating from regular and phantom scalar fields,” [arXiv:2303.09116 [gr-qc]].
  45. R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48, no.8, R3427-R3431 (1993) [arXiv:gr-qc/9307038 [gr-qc]].
  46. V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50, 846-864 (1994) [arXiv:gr-qc/9403028 [gr-qc]].
  47. S. Dutta and R. Gopakumar, “On Euclidean and Noetherian entropies in AdS space,” Phys. Rev. D 74, 044007 (2006) [arXiv:hep-th/0604070 [hep-th]].
  48. G. Clement, “Spinning charged BTZ black holes and selfdual particle - like solutions,” Phys. Lett. B 367 (1996), 70-74 [arXiv:gr-qc/9510025 [gr-qc]].
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.