Toward $L_\infty$-recovery of Nonlinear Functions: A Polynomial Sample Complexity Bound for Gaussian Random Fields (2305.00322v1)
Abstract: Many machine learning applications require learning a function with a small worst-case error over the entire input domain, that is, the $L_\infty$-error, whereas most existing theoretical works only guarantee recovery in average errors such as the $L_2$-error. $L_\infty$-recovery from polynomial samples is even impossible for seemingly simple function classes such as constant-norm infinite-width two-layer neural nets. This paper makes some initial steps beyond the impossibility results by leveraging the randomness in the ground-truth functions. We prove a polynomial sample complexity bound for random ground-truth functions drawn from Gaussian random fields. Our key technical novelty is to prove that the degree-$k$ spherical harmonics components of a function from Gaussian random field cannot be spiky in that their $L_\infty$/$L_2$ ratios are upperbounded by $O(d \sqrt{\ln k})$ with high probability. In contrast, the worst-case $L_\infty$/$L_2$ ratio for degree-$k$ spherical harmonics is on the order of $\Omega(\min{d{k/2},k{d/2}})$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.