Evolutionary Multi-Objective Aerodynamic Design Optimization Using CFD Simulation Incorporating Deep Neural Network (2304.14973v1)
Abstract: An evolutionary multi-objective aerodynamic design optimization method using the computational fluid dynamics (CFD) simulations incorporating deep neural network (DNN) to reduce the required computational time is proposed. In this approach, the DNN infers the flow field from the grid data of a design and the CFD simulation starts from the inferred flow field to obtain the steady-state flow field with a smaller number of time integration steps. To show the effectiveness of the proposed method, a multi-objective aerodynamic airfoil design optimization is demonstrated. The results indicate that the computational time for design optimization is suppressed to 57.9% under 96 cores processor conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.