Papers
Topics
Authors
Recent
2000 character limit reached

Solving constrained Procrustes problems: a conic optimization approach (2304.14961v1)

Published 28 Apr 2023 in math.OC

Abstract: Procrustes problems are matrix approximation problems searching for a~transformation of the given dataset to fit another dataset. They find applications in numerous areas, such as factor and multivariate analysis, computer vision, multidimensional scaling or finance. The known methods for solving Procrustes problems have been designed to handle specific sub-classes, where the set of feasible solutions has a special structure (e.g. a Stiefel manifold), and the objective function is defined using a specific matrix norm (typically the Frobenius norm). We show that a wide class of Procrustes problems can be formulated and solved as a (rank-constrained) semi-definite program. This includes balanced and unbalanced (weighted) Procrustes problems, possibly to a partially specified target, but also oblique, projection or two-sided Procrustes problems. The proposed approach can handle additional linear, quadratic, or semi-definite constraints and the objective function defined using the Frobenius norm but also standard operator norms. The results are demonstrated on a set of numerical experiments and also on real applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.