Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diagonals of self-adjoint operators II: Non-compact operators (2304.14468v1)

Published 27 Apr 2023 in math.FA and math.SP

Abstract: Given a self-adjoint operator $T$ on a separable infinite-dimensional Hilbert space we study the problem of characterizing the set $\mathcal D(T)$ of all possible diagonals of $T$. For operators $T$ with at least two points in their essential spectrum $\sigma_{ess}(T)$, we give a complete characterization of $\mathcal D(T)$ for the class of self-adjoint operators sharing the same spectral measure as $T$ with a possible exception of multiplicities of eigenvalues at the extreme points of $\sigma_{ess}(T)$. We also give a more precise description of $\mathcal D(T)$ for a fixed self-adjoint operator $T$, albeit modulo the kernel problem for special classes of operators. These classes consist of operators $T$ for which an extreme point of the essential spectrum $\sigma_{ess}(T)$ is also an extreme point of the spectrum $\sigma(T)$. Our results generalize a characterization of diagonals of orthogonal projections by Kadison, Blaschke-type results of M\"uller and Tomilov, and Loreaux and Weiss, and a characterization of diagonals of operators with finite spectrum by the authors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.