Large-scale dispersive estimates for acoustic operators: homogenization meets localization (2304.14046v3)
Abstract: This work relates quantitatively homogenization to Anderson localization for acoustic operators in disordered media. By blending dispersive estimates for homogenized operators and quantitative homogenization of the wave equation, we derive large-scale dispersive estimates for waves in disordered media that we apply to the spreading of low-energy eigenstates. This gives a short and direct proof that the lower spectrum of the acoustic operator is purely absolutely continuous in case of periodic media, and it further provides new lower bounds on the localization length of possible eigenstates in case of quasiperiodic or random media.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.