Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble CNNs for Breast Tumor Classification

Published 11 Apr 2023 in eess.IV, cs.AI, cs.CV, and cs.LG | (2304.13727v1)

Abstract: To improve the recognition ability of computer-aided breast mass classification among mammographic images, in this work we explore the state-of-the-art classification networks to develop an ensemble mechanism. First, the regions of interest (ROIs) are obtained from the original dataset, and then three models, i.e., XceptionNet, DenseNet, and EfficientNet, are trained individually. After training, we ensemble the mechanism by summing the probabilities outputted from each network which enhances the performance up to 5%. The scheme has been validated on a public dataset and we achieved accuracy, precision, and recall 88%, 85%, and 76% respectively.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.