Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

To the theory of decaying turbulence (2304.13719v11)

Published 26 Apr 2023 in physics.flu-dyn, math-ph, math.MP, and nlin.SI

Abstract: We have found an infinite dimensional manifold of exact solutions of the Navier-Stokes loop equation for the Wilson loop in decaying Turbulence in arbitrary dimension $d >2$. This solution family is equivalent to a fractal curve in complex space $\mathbb Cd$ with random steps parametrized by $N$ Ising variables $\sigma_i=\pm 1$, in addition to a rational number $\frac{p}{q}$ and an integer winding number $r$, related by $\sum \sigma_i = q r$. This equivalence provides a dual theory describing a strong turbulent phase of the Navier-Stokes flow in $\mathbb R_d$ space as a random geometry in a different space, like ADS/CFT correspondence in gauge theory. From a mathematical point of view, this theory implements a stochastic solution of the unforced Navier-Stokes equations. For a theoretical physicist, this is a quantum statistical system with integer-valued parameters, satisfying some number theory constraints. Its long-range interaction leads to critical phenomena when its size $N \rightarrow \infty$ or its chemical potential $\mu \rightarrow 0$. The system with fixed $N$ has different asymptotics at odd and even $N\rightarrow \infty$, but the limit $\mu \rightarrow 0$ is well defined. The energy dissipation rate is analytically calculated as a function of $\mu$ using methods of number theory. It grows as $\nu/\mu2$ in the continuum limit $\mu \rightarrow 0$, leading to anomalous dissipation at $\mu \propto \sqrt{\nu} \to 0$. The same method is used to compute all the local vorticity distribution, which has no continuum limit but is renormalizable in the sense that infinities can be absorbed into the redefinition of the parameters. The small perturbation of the fixed manifold satisfies the linear equation we solved in a general form. This perturbation decays as $t{-\lambda}$, with a continuous spectrum of indexes $\lambda$ in the local limit $\mu \to 0$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube