Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Differential Privacy via Distributionally Robust Optimization (2304.12681v3)

Published 25 Apr 2023 in cs.CR, cs.LG, and math.OC

Abstract: In recent years, differential privacy has emerged as the de facto standard for sharing statistics of datasets while limiting the disclosure of private information about the involved individuals. This is achieved by randomly perturbing the statistics to be published, which in turn leads to a privacy-accuracy trade-off: larger perturbations provide stronger privacy guarantees, but they result in less accurate statistics that offer lower utility to the recipients. Of particular interest are therefore optimal mechanisms that provide the highest accuracy for a pre-selected level of privacy. To date, work in this area has focused on specifying families of perturbations a priori and subsequently proving their asymptotic and/or best-in-class optimality. In this paper, we develop a class of mechanisms that enjoy non-asymptotic and unconditional optimality guarantees. To this end, we formulate the mechanism design problem as an infinite-dimensional distributionally robust optimization problem. We show that the problem affords a strong dual, and we exploit this duality to develop converging hierarchies of finite-dimensional upper and lower bounding problems. Our upper (primal) bounds correspond to implementable perturbations whose suboptimality can be bounded by our lower (dual) bounds. Both bounding problems can be solved within seconds via cutting plane techniques that exploit the inherent problem structure. Our numerical experiments demonstrate that our perturbations can outperform the previously best results from the literature on artificial as well as standard benchmark problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube