Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 136 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Complementarity between decoherence and information retrieval from the environment (2304.12222v2)

Published 24 Apr 2023 in quant-ph

Abstract: We address the problem of fundamental limitations of information extraction from the environment in open quantum systems. We derive a model-independent, hybrid quantum-classical solution of open dynamics in the recoil-less limit, which includes environmental degrees of freedom. Specifying to the celebrated Caldeira-Leggett model of hot thermal environments, ubiquitous in everyday situations, we reveal the existence of a new lengthscale, called distinguishability length, different from the well-known thermal de Broglie wavelength that governs the decoherence. Interestingly, a new integral kernel, called Quantum Fisher Information kernel, appears in the analysis. It complements the well-known dissipation and noise kernels and satisfies disturbance-information gain type of relations, similar to the famous fluctuation-dissipation relation. Our results complement the existing treatments of the Caldeira-Legget model from a non-standard and highly non-trivial perspective of information dynamics in the environment. This leads to a full picture of how the open evolution looks like from both the system and the environment points of view, as well as sets limits on the precision of indirect observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. P. J. Lewis, Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics (New York, NY: Oxford University Press USA, 2016).
  2. T. Maudlin, Philosophy of Physics: Quantum Theory (Princeton University Press, 2019).
  3. J. A. Barrett, The Conceptual Foundations of Quantum Mechanics (Oxford, UK: Oxford University Press, 2019).
  4. H. D. Zeh, On the interpretation of measurement in quantum theory, Found. Phys. 1, 69 (1970).
  5. W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D 24, 1516 (1981).
  6. W. H. Zurek, Environment-induced superselection rules, Phys. Rev. D 26, 1862 (1982).
  7. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
  8. M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition (Springer Berlin, Heidelberg, 2007).
  9. A. Caldeira and A. Leggett, Path integral approach to quantum brownian motion, Physica A: Statistical Mechanics and its Applications 121, 587 (1983).
  10. G. J. Papadopoulos, J. Phys. A 1, 413 (1968).
  11. W. H. Zurek, Reduction of the wave-packet: How long does it take?, in Frontiers in Nonequilibrium Statistical Physics, edited by G. T. Moore and M. T. Scully (Plenum, New York, 1986) pp. 145–149.
  12. C. A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum mechanical states, IEEE Trans. Inf. Theory 45, 1216 (1999).
  13. M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?, Phys. Rev. Lett. 80, 5239 (1998).
  14. W. H. Zurek, Quantum darwinism, Nat. Phys. 5, 181 (2009).
  15. R. Blume-Kohout and W. H. Zurek, Quantum darwinism in quantum brownian motion, Phys. Rev. Lett. 101, 240405 (2008).
  16. F. G. S. L. Brandão, M. Piani, and P. Horodecki, Generic emergence of classical features in quantum darwinism, Nat. Commun. 6, 7908 (2015).
  17. S. Lorenzo, M. Paternostro, and G. M. Palma, Anti-zeno-based dynamical control of the unfolding of quantum darwinism, Phys. Rev. Res. 2, 013164 (2020).
  18. J. K. Korbicz, P. Horodecki, and R. Horodecki, Objectivity in a noisy photonic environment through quantum state information broadcasting, Phys. Rev. Lett. 112, 120402 (2014).
  19. R. Horodecki, J. K. Korbicz, and P. Horodecki, Quantum origins of objectivity, Phys. Rev. A 91, 032122 (2015).
  20. J. Tuziemski and J. K. Korbicz, Dynamical objectivity in quantum brownian motion, Europhysics Letters 112, 40008 (2015).
  21. T. P. Le and A. Olaya-Castro, Strong quantum darwinism and strong independence are equivalent to spectrum broadcast structure, Phys. Rev. Lett. 122, 010403 (2019).
  22. H. Häffner, C. Roos, and R. Blatt, Quantum computing with trapped ions, Physics Reports 469, 155 (2008).
  23. A. G. Redfield, On the theory of relaxation processes, IBM Journal of Research and Development 1, 19 (1957).
  24. F. Bloch, Generalized theory of relaxation, Phys. Rev. 105, 1206 (1957).
  25. E. B. Davies, Markovian master equations, Commun. Math. Phys. 39, 91 (1974).
  26. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of n-level systems, J. Math. Phys. 17, 821 (1976).
  27. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
  28. R. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963).
  29. R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, International series in pure and applied physics (McGraw-Hill, New York, NY, 1965).
  30. L. S. Schulman, Techniques and Applications of Path Integration (Dover Publications, 2012).
  31. P. Ullersma, An exactly solvable model for brownian motion: I. derivation of the langevin equation, Physica 32, 27 (1966).
  32. B. L. Hu, J. P. Paz, and Y. Zhang, Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45, 2843 (1992).
  33. F. Haake and M. Żukowski, Classical motion of meter variables in the quantum theory of measurement, Phys. Rev. A 47, 2506 (1993).
  34. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
  35. J. Tuziemski and J. K. Korbicz, Analytical studies of spectrum broadcast structures in quantum brownian motion, Journal of Physics A: Mathematical and Theoretical 49, 445301 (2016).
  36. G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014).
  37. G. D. Mahan, Many-Particle Physics (Springer US, Boston, MA, 2000).
  38. F. Buscemi, M. Hayashi, and M. Horodecki, Global information balance in quantum measurements, Phys. Rev. Lett. 100, 210504 (2008).
  39. R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics 29, 255 (1966).
  40. M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube