Complementarity between decoherence and information retrieval from the environment (2304.12222v2)
Abstract: We address the problem of fundamental limitations of information extraction from the environment in open quantum systems. We derive a model-independent, hybrid quantum-classical solution of open dynamics in the recoil-less limit, which includes environmental degrees of freedom. Specifying to the celebrated Caldeira-Leggett model of hot thermal environments, ubiquitous in everyday situations, we reveal the existence of a new lengthscale, called distinguishability length, different from the well-known thermal de Broglie wavelength that governs the decoherence. Interestingly, a new integral kernel, called Quantum Fisher Information kernel, appears in the analysis. It complements the well-known dissipation and noise kernels and satisfies disturbance-information gain type of relations, similar to the famous fluctuation-dissipation relation. Our results complement the existing treatments of the Caldeira-Legget model from a non-standard and highly non-trivial perspective of information dynamics in the environment. This leads to a full picture of how the open evolution looks like from both the system and the environment points of view, as well as sets limits on the precision of indirect observations.
- P. J. Lewis, Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics (New York, NY: Oxford University Press USA, 2016).
- T. Maudlin, Philosophy of Physics: Quantum Theory (Princeton University Press, 2019).
- J. A. Barrett, The Conceptual Foundations of Quantum Mechanics (Oxford, UK: Oxford University Press, 2019).
- H. D. Zeh, On the interpretation of measurement in quantum theory, Found. Phys. 1, 69 (1970).
- W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D 24, 1516 (1981).
- W. H. Zurek, Environment-induced superselection rules, Phys. Rev. D 26, 1862 (1982).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
- M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition (Springer Berlin, Heidelberg, 2007).
- A. Caldeira and A. Leggett, Path integral approach to quantum brownian motion, Physica A: Statistical Mechanics and its Applications 121, 587 (1983).
- G. J. Papadopoulos, J. Phys. A 1, 413 (1968).
- W. H. Zurek, Reduction of the wave-packet: How long does it take?, in Frontiers in Nonequilibrium Statistical Physics, edited by G. T. Moore and M. T. Scully (Plenum, New York, 1986) pp. 145–149.
- C. A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum mechanical states, IEEE Trans. Inf. Theory 45, 1216 (1999).
- M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?, Phys. Rev. Lett. 80, 5239 (1998).
- W. H. Zurek, Quantum darwinism, Nat. Phys. 5, 181 (2009).
- R. Blume-Kohout and W. H. Zurek, Quantum darwinism in quantum brownian motion, Phys. Rev. Lett. 101, 240405 (2008).
- F. G. S. L. Brandão, M. Piani, and P. Horodecki, Generic emergence of classical features in quantum darwinism, Nat. Commun. 6, 7908 (2015).
- S. Lorenzo, M. Paternostro, and G. M. Palma, Anti-zeno-based dynamical control of the unfolding of quantum darwinism, Phys. Rev. Res. 2, 013164 (2020).
- J. K. Korbicz, P. Horodecki, and R. Horodecki, Objectivity in a noisy photonic environment through quantum state information broadcasting, Phys. Rev. Lett. 112, 120402 (2014).
- R. Horodecki, J. K. Korbicz, and P. Horodecki, Quantum origins of objectivity, Phys. Rev. A 91, 032122 (2015).
- J. Tuziemski and J. K. Korbicz, Dynamical objectivity in quantum brownian motion, Europhysics Letters 112, 40008 (2015).
- T. P. Le and A. Olaya-Castro, Strong quantum darwinism and strong independence are equivalent to spectrum broadcast structure, Phys. Rev. Lett. 122, 010403 (2019).
- H. Häffner, C. Roos, and R. Blatt, Quantum computing with trapped ions, Physics Reports 469, 155 (2008).
- A. G. Redfield, On the theory of relaxation processes, IBM Journal of Research and Development 1, 19 (1957).
- F. Bloch, Generalized theory of relaxation, Phys. Rev. 105, 1206 (1957).
- E. B. Davies, Markovian master equations, Commun. Math. Phys. 39, 91 (1974).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of n-level systems, J. Math. Phys. 17, 821 (1976).
- G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
- R. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963).
- R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, International series in pure and applied physics (McGraw-Hill, New York, NY, 1965).
- L. S. Schulman, Techniques and Applications of Path Integration (Dover Publications, 2012).
- P. Ullersma, An exactly solvable model for brownian motion: I. derivation of the langevin equation, Physica 32, 27 (1966).
- B. L. Hu, J. P. Paz, and Y. Zhang, Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45, 2843 (1992).
- F. Haake and M. Żukowski, Classical motion of meter variables in the quantum theory of measurement, Phys. Rev. A 47, 2506 (1993).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
- J. Tuziemski and J. K. Korbicz, Analytical studies of spectrum broadcast structures in quantum brownian motion, Journal of Physics A: Mathematical and Theoretical 49, 445301 (2016).
- G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014).
- G. D. Mahan, Many-Particle Physics (Springer US, Boston, MA, 2000).
- F. Buscemi, M. Hayashi, and M. Horodecki, Global information balance in quantum measurements, Phys. Rev. Lett. 100, 210504 (2008).
- R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics 29, 255 (1966).
- M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.