Machine Learning-based Methods for Joint {Detection-Channel Estimation} in OFDM Systems (2304.12189v1)
Abstract: In this work, two ML-based structures for joint detection-channel estimation in OFDM systems are proposed and extensively characterized. Both ML architectures, namely Deep Neural Network (DNN) and Extreme Learning Machine (ELM), are developed {to provide improved data detection performance} and compared with the conventional matched filter (MF) detector equipped with the minimum mean square error (MMSE) and least square (LS) channel estimators. The bit-error-rate (BER) performance vs. computational complexity trade-off is analyzed, demonstrating the superiority of the proposed DNN-OFDM and ELM-OFDM detectors methodologies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.