Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Single-stage Multi-human Parsing via Point Sets and Center-based Offsets (2304.11356v1)

Published 22 Apr 2023 in cs.CV

Abstract: This work studies the multi-human parsing problem. Existing methods, either following top-down or bottom-up two-stage paradigms, usually involve expensive computational costs. We instead present a high-performance Single-stage Multi-human Parsing (SMP) deep architecture that decouples the multi-human parsing problem into two fine-grained sub-problems, i.e., locating the human body and parts. SMP leverages the point features in the barycenter positions to obtain their segmentation and then generates a series of offsets from the barycenter of the human body to the barycenters of parts, thus performing human body and parts matching without the grouping process. Within the SMP architecture, we propose a Refined Feature Retain module to extract the global feature of instances through generated mask attention and a Mask of Interest Reclassify module as a trainable plug-in module to refine the classification results with the predicted segmentation. Extensive experiments on the MHPv2.0 dataset demonstrate the best effectiveness and efficiency of the proposed method, surpassing the state-of-the-art method by 2.1% in AP50p, 1.0% in APvolp, and 1.2% in PCP50. In particular, the proposed method requires fewer training epochs and a less complex model architecture. We will release our source codes, pretrained models, and online demos to facilitate further studies.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.