Rationally Extended Harmonic Oscillator potential, Isospectral Family and the Uncertainity Relations (2304.11314v1)
Abstract: We consider the rationally extended harmonic oscillator potential which is isospectral to the conventional one and whose solutions are associated with the exceptional, $X_m$- Hermite polynomials and discuss its various important properties for different even codimension of $m$. The uncertainty relations are obtained for different $m$ and it is shown that for the ground state, the uncertainity increases as $m$ increases. A one parameter $(\lambda)$ family of exactly solvable isospectral potential corresponding to this extended harmonic oscillator potential is obtained. Special cases corresponding to the $\lambda=0$ and $\lambda = -1$, which give the Pursey and the Abhram-Moses potentials respectively, are discussed. The uncertainty relations for the entire isospectral family of potentials for different $m$ and $\lambda$ are also calculated.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.