Testing the Reliability of ChatGPT for Text Annotation and Classification: A Cautionary Remark (2304.11085v1)
Abstract: Recent studies have demonstrated promising potential of ChatGPT for various text annotation and classification tasks. However, ChatGPT is non-deterministic which means that, as with human coders, identical input can lead to different outputs. Given this, it seems appropriate to test the reliability of ChatGPT. Therefore, this study investigates the consistency of ChatGPT's zero-shot capabilities for text annotation and classification, focusing on different model parameters, prompt variations, and repetitions of identical inputs. Based on the real-world classification task of differentiating website texts into news and not news, results show that consistency in ChatGPT's classification output can fall short of scientific thresholds for reliability. For example, even minor wording alterations in prompts or repeating the identical input can lead to varying outputs. Although pooling outputs from multiple repetitions can improve reliability, this study advises caution when using ChatGPT for zero-shot text annotation and underscores the need for thorough validation, such as comparison against human-annotated data. The unsupervised application of ChatGPT for text annotation and classification is not recommended.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.