Asymptotic normality for a modified quadratic variation of the Hermite process
Abstract: We consider a modified quadratic variation of the Hermite process based on some well-chosen increments of this process. These special increments have the very useful property to be independent and identically distributed up to asymptotically negligible remainders. We prove that this modified quadratic variation satisfies a Central Limit Theorem and we derive its rate of convergence under the Wasserstein distance via Stein-Malliavin calculus. As a consequence, we construct, for the first time in the literature related to Hermite processes, a strongly consistent and asymptotically normal estimator for the Hurst parameter.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.