Structure of fine Selmer groups in abelian p-adic Lie extensions
Abstract: This paper studies fine Selmer groups of elliptic curves in abelian $p$-adic Lie extensions. A class of elliptic curves are provided where both the Selmer group and the fine Selmer group are trivial in the cyclotomic $\mathbb{Z}_p$-extension. The fine Selmer groups of elliptic curves with complex multiplication are shown to be pseudonull over the trivializing extension in some new cases. Finally, a relationship between the structure of the fine Selmer group for some CM elliptic curves and the Generalized Greenberg's Conjecture is clarified.
- Aribam, C. S. On the μ𝜇\muitalic_μ-invariant of fine Selmer groups. J. Number Theory 135 (2014), 284–300.
- Bandini, A. Greenberg’s conjecture and capitulation in ℤpdsuperscriptsubscriptℤ𝑝𝑑\mathbb{Z}_{p}^{d}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT-extensions. J. Number Theory 122, 1 (2007), 121–134.
- Numerical verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s p𝑝pitalic_p-rationality conjecture. J. Théor. Nombres Bordeaux 32, 1 (2020), 159–177.
- Bhave, A. Analogue of Kida’s formula for certain strongly admissible extensions. J. Number Theory 122, 1 (2007), 100–120.
- Higher Chern classes in Iwasawa theory. Amer. J. Math. 142, 2 (2020), 627–682.
- Brink, D. Prime decomposition in the anti-cyclotomic extension. Math. Comp. 76, 260 (2007), 2127–2138.
- Coates, J. Fragments of the GL2subscriptGL2{\rm GL}_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Iwasawa theory of elliptic curves without complex multiplication. In Arithmetic theory of elliptic curves (Cetraro, 1997), vol. 1716 of Lecture Notes in Math. Springer, Berlin, 1999, pp. 1–50.
- Modules over Iwasawa algebras. J. Inst. Math. Jussieu 2, 1 (2003), 73–108.
- Galois cohomology of elliptic curves, vol. 88 of Tata Institute of Fundamental Research Lectures on Mathematics. Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, 2000.
- Fine Selmer groups for elliptic curves with complex multiplication. In Algebra and number theory. Hindustan Book Agency, Delhi, 2005, pp. 327–337.
- Fine Selmer groups of elliptic curves over p𝑝pitalic_p-adic Lie extensions. Math. Ann. 331, 4 (2005), 809–839.
- On the Euler-Poincaré characteristics of finite dimensional p𝑝pitalic_p-adic Galois representations. Publ. Math. Inst. Hautes Études Sci., 93 (2001), 107–143.
- Analytic pro-p𝑝pitalic_p groups, second ed., vol. 61 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
- The Iwasawa invariant μpsubscript𝜇𝑝\mu_{p}italic_μ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT vanishes for abelian number fields. Ann. of Math. (2) 109, 2 (1979), 377–395.
- Fujii, S. On a bound of λ𝜆\lambdaitalic_λ and the vanishing of μ𝜇\muitalic_μ of ℤpsubscriptℤ𝑝\mathbb{Z}_{p}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-extensions of an imaginary quadratic field. J. Math. Soc. Japan 65, 1 (2013), 277–298.
- Fujii, S. On Greenberg’s generalized conjecture for CM-fields. J. Reine Angew. Math. 731 (2017), 259–278.
- Gras, G. Class field theory: From theory to practice. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French manuscript by Henri Cohen.
- Greenberg, R. Iwasawa theory for elliptic curves. In Arithmetic theory of elliptic curves (Cetraro, 1997), vol. 1716 of Lecture Notes in Math. Springer, Berlin, 1999, pp. 51–144.
- Greenberg, R. Introduction to Iwasawa theory for elliptic curves. Arithmetic algebraic geometry 9 (2001), 407–464.
- Greenberg, R. Iwasawa theory—past and present. In Class field theory—its centenary and prospect (Tokyo, 1998), vol. 30 of Adv. Stud. Pure Math. Math. Soc. Japan, Tokyo, 2001, pp. 335–385.
- Greenberg, R. Galois representations with open image. Ann. Math. Qué. 40, 1 (2016), 83–119.
- Howson, S. Iwasawa theory of Elliptic Curves for p𝑝pitalic_p-adic Lie extensions. PhD thesis, University of Cambridge, 1998.
- Howson, S. Euler characteristics as invariants of Iwasawa modules. Proc. London Math. Soc. (3) 85, 3 (2002), 634–658.
- Imai, H. A remark on the rational points of abelian varieties with values in cyclotomic Zpsubscript𝑍𝑝Z_{p}italic_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-extensions. Proc. Japan Acad. 51 (1975), 12–16.
- Iwasawa, K. On 𝐙lsubscript𝐙𝑙{\bf Z}_{l}bold_Z start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT-extensions of algebraic number fields. Ann. of Math. (2) 98 (1973), 246–326.
- Iwasawa, K. On the μ𝜇\muitalic_μ-invariants of Zℓsubscript𝑍ℓZ_{\ell}italic_Z start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT-extensions. In Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki. Kinokuniya, Tokyo, 1973, pp. 1–11.
- Jha, S. Fine Selmer group of Hida deformations over non-commutative p𝑝pitalic_p-adic Lie extensions. Asian J. Math. 16, 2 (2012), 353–365.
- On the Hida deformations of fine Selmer groups. J. Algebra 338 (2011), 180–196.
- Kato, K. Universal norms of p𝑝pitalic_p-units in some non-commutative Galois extensions. Doc. Math., Extra Vol. (2006), 551–565.
- Kim, B.-D. The plus/minus Selmer groups for supersingular primes. J. Aust. Math. Soc. 95, 2 (2013), 189–200.
- Kleine, S. Relative extensions of number fields and Greenberg’s generalised conjecture. Acta Arith. 174, 4 (2016), 367–392.
- Kobayashi, S. Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152, 1 (2003), 1–36.
- Control theorems for fine Selmer groups. J. théor. Nombres Bordeaux (2022), accepted for publication.
- Lang, S. Elliptic functions, second ed., vol. 112 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1987. With an appendix by J. Tate.
- Conjectures de Greenberg et extensions pro-p𝑝pitalic_p-libres d’un corps de nombres. Manuscripta Math. 102, 2 (2000), 187–209.
- Codimension two cycles in Iwasawa theory and elliptic curves with supersingular reduction. Forum Math. Sigma 7 (2019), Paper No. e25, 81.
- Mazur, B. Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18 (1972), 183–266.
- McCallum, W. G. Greenberg’s conjecture and units in multiple ℤpsubscriptℤ𝑝\mathbb{Z}_{p}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-extensions. Amer. J. Math. 123, 5 (2001), 909–930.
- A cup product in the Galois cohomology of number fields. Duke Math. J. 120, 2 (2003), 269–310.
- Merel, L. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124, 1-3 (1996), 437–449.
- Minardi, J. V. Iwasawa modules for ℤpdsubscriptsuperscriptℤ𝑑𝑝\mathbb{Z}^{d}_{p}blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-extensions of algebraic number fields. ProQuest LLC, Ann Arbor, MI, 1986. Thesis (Ph.D.)–University of Washington.
- Sur l’arithmétique des corps de nombres p𝑝pitalic_p-rationnels. In Séminaire de Théorie des Nombres, Paris 1987–88, vol. 81 of Progr. Math. Birkhäuser Boston, Boston, MA, 1990, pp. 155–200.
- Murty, V. K. Modular forms and the Chebotarev density theorem. II. In Analytic number theory (Kyoto, 1996), vol. 247 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1997, pp. 287–308.
- Nekovář, J. Selmer complexes. Astérisque, 310 (2006), viii+559.
- Cohomology of number fields, second ed., vol. 323 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2008.
- Nguyen Quang Do, T. Analogues supérieurs du noyau sauvage. Sém. Théor. Nombres Bordeaux (2) 4, 2 (1992), 263–271.
- K2subscript𝐾2K_{2}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT et conjecture de Greenberg dans les ℤpsubscriptℤ𝑝\mathbb{Z}_{p}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-extensions multiples. J. Théor. Nombres Bordeaux 17, 2 (2005), 669–688.
- Residual supersingular Iwasawa theory and signed Iwasawa invariants. Rendiconti del Seminario Mathematico di Padova (2021), accepted for publication, DOI 10.4171/RSMUP/111.
- Ochi, Y. A remark on the pseudo-nullity conjecture for fine Selmer groups of elliptic curves. Comment. Math. Univ. St. Pauli 58, 1 (2009), 1–7.
- On the structure of Selmer groups over p𝑝pitalic_p-adic Lie extensions. J. Algebraic Geom. 11, 3 (2002), 547–580.
- Ozaki, M. Iwasawa invariants of ℤpsubscriptℤ𝑝\mathbb{Z}_{p}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-extensions over an imaginary quadratic field. In Class field theory—its centenary and prospect (Tokyo, 1998), vol. 30 of Adv. Stud. Pure Math. Math. Soc. Japan, Tokyo, 2001, pp. 387–399.
- Perrin-Riou, B. Groupe de Selmer d’une courbe elliptique à multiplication complexe. Compositio Math. 43, 3 (1981), 387–417.
- The main conjecture for CM elliptic curves at supersingular primes. Ann. of Math. (2) 159, 1 (2004), 447–464.
- Ribet, K. Torsion points of abelian varieties in cyclotomic extensions. Enseign. Math 27 (1981), 315–319.
- Rubin, K. Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, 1999. AWS notes.
- Rubin, K. Euler systems, vol. 147 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study.
- Schneider, P. Über gewisse Galoiscohomologiegruppen. Math. Z. 168, 2 (1979), 181–205.
- Serre, J.-P. Abelian l𝑙litalic_l-adic representations and elliptic curves. W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute.
- Serre, J.-P. Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math., 54 (1981), 323–401.
- Serre, J.-P. Galois cohomology. Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author.
- Sharifi, R. T. On Galois groups of unramified pro-p𝑝pitalic_p extensions. Math. Ann. 342, 2 (2008), 297–308.
- Shekhar, S. Comparing the corank of fine Selmer group and Selmer group of elliptic curves. J. Ramanujan Math. Soc. 33, 2 (2018), 205–217.
- Takahashi, N. On Greenberg’s generalized conjecture for imaginary quartic fields. Int. J. Number Theory 17, 5 (2021), 1163–1173.
- Venjakob, O. On the structure theory of the Iwasawa algebra of a p𝑝pitalic_p-adic Lie group. J. Eur. Math. Soc. (JEMS) 4, 3 (2002), 271–311.
- Venjakob, O. A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory. J. Reine Angew. Math. 559 (2003), 153–191. With an appendix by Denis Vogel.
- Venjakob, O. On the Iwasawa theory of p𝑝pitalic_p-adic Lie extensions. Compositio Math. 138, 1 (2003), 1–54.
- Washington, L. C. Introduction to cyclotomic fields, 2 ed., vol. 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.
- Wuthrich, C. Iwasawa theory of the fine Selmer group. J. Algebraic Geom. 16, 1 (2007), 83–108.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.