Black holes, white holes, and near-horizon physics (2304.10692v3)
Abstract: Black and white holes play remarkably contrasting roles in general relativity versus observational astrophysics. While there is overwhelming observational evidence for the existence of compact objects that are "cold, dark, and heavy", which thereby are natural candidates for black holes, the theoretically viable time-reversed variants -- the "white holes" -- have nowhere near the same level of observational support. Herein we shall explore the possibility that the connection between black and white holes is much more intimate than commonly appreciated. We shall first construct "horizon penetrating" coordinate systems that differ from the standard curvature coordinates only in a small near-horizon region, thereby emphasizing that ultimately the distinction between black and white horizons depends only on near-horizon physics. We shall then construct an explicit model for a "black-to-white transition" where all of the nontrivial physics is confined to a compact region of spacetime -- a finite-duration finite-thickness, (in principle arbitrarily small), region straddling the naive horizon. Moreover we shall show that it is possible to arrange the "black-to-white transition" to have zero action -- so that it will not be subject to destructive interference in the Feynman path integral. This then raises the very intriguing possibility that astrophysical black holes might be interpratable in terms of a quantum superposition of black and white horizons.
- D. Psaltis, F. Ozel, C. K. Chan and D. P. Marrone, “A General Relativistic Null Hypothesis Test with Event Horizon Telescope Observations of the black-hole shadow in Sgr A*”, Astrophys. J. 814 (2015) no.2, 115 doi:10.1088/0004-637X/814/2/115 [arXiv:1411.1454 [astro-ph.HE]].
- A. E. Broderick, T. Johannsen, A. Loeb and D. Psaltis, “Testing the No-Hair Theorem with Event Horizon Telescope Observations of Sagittarius A*”, Astrophys. J. 784 (2014), 7 doi:10.1088/0004-637X/784/1/7 [arXiv:1311.5564 [astro-ph.HE]].
- V. Cardoso and L. Gualtieri, “Testing the black hole ‘no-hair’ hypothesis”, Class. Quant. Grav. 33 (2016) no.17, 174001 doi:10.1088/0264-9381/33/17/174001 [arXiv:1607.03133 [gr-qc]].
- R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, “Phenomenological aspects of black holes beyond general relativity”, Phys. Rev. D 98 (2018) no.12, 124009 doi:10.1103/PhysRevD.98.124009 [arXiv:1809.08238 [gr-qc]].
- R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio and M. Visser, “On the viability of regular black holes”, JHEP 07 (2018), 023 doi:10.1007/JHEP07(2018)023 [arXiv:1805.02675 [gr-qc]].
- S. W. Hawking, “Information Preservation and Weather Forecasting for Black Holes”, [arXiv:1401.5761 [hep-th]].
- M. Visser, “Physical observability of horizons”, Phys. Rev. D 90 (2014) no.12, 127502 doi:10.1103/PhysRevD.90.127502 [arXiv:1407.7295 [gr-qc]].
- A. Ashtekar, J. Olmedo and P. Singh, “Quantum extension of the Kruskal spacetime”, Phys. Rev. D 98 (2018) no.12, 126003 doi:10.1103/PhysRevD.98.126003 [arXiv:1806.02406 [gr-qc]].
- J. Macher and R. Parentani, “Black/White hole radiation from dispersive theories”, Phys. Rev. D 79 (2009), 124008 doi:10.1103/PhysRevD.79.124008 [arXiv:0903.2224 [hep-th]].
- A. Barrau, C. Rovelli and F. Vidotto, “Fast Radio Bursts and White Hole Signals”, Phys. Rev. D 90 (2014) no.12, 127503 doi:10.1103/PhysRevD.90.127503 [arXiv:1409.4031 [gr-qc]].
- D. M. Eardley, “Death of White Holes in the Early Universe”, Phys. Rev. Lett. 33 (1974), 442-444 doi:10.1103/PhysRevLett.33.442
- C. Barceló, R. Carballo-Rubio and L. J. Garay, “Where does the physics of extreme gravitational collapse reside?”, Universe 2 (2016) no.2, 7 doi:10.3390/universe2020007 [arXiv:1510.04957 [gr-qc]].
- C. Rovelli and F. Vidotto, “Small black/white hole stability and dark matter”, Universe 4 (2018) no.11, 127 doi:10.3390/universe4110127 [arXiv:1805.03872 [gr-qc]].
- R. M. Wald and S. Ramaswamy, “Particle production by white holes”, Phys. Rev. D 21 (1980), 2736-2741 doi:10.1103/PhysRevD.21.2736
- C. Rovelli and F. Vidotto, “White-hole dark matter and the origin of past low-entropy”, [arXiv:1804.04147 [gr-qc]].
- M. L. McClure, K. Anderson and K. Bardahl, “Non-isolated dynamic black holes and white holes”, Phys. Rev. D 77 (2008), 104008 doi:10.1103/PhysRevD.77.104008 [arXiv:0803.2671 [gr-qc]].
- O. B. Zaslavskii, “On White Holes as Particle Accelerator”, Grav. Cosmol. 24 (2018) no.1, 92-96 doi:10.1134/S0202289318010164 [arXiv:1707.07864 [gr-qc]].
- A. Barrau, L. Ferdinand, K. Martineau and C. Renevey, “Closer look at white hole remnants”, Phys. Rev. D 103 (2021) no.4, 043532 doi:10.1103/PhysRevD.103.043532 [arXiv:2101.01949 [gr-qc]].
- I. Nikitin, “Stability of white holes revisited”, Bled Workshops Phys. 21 (2020), 221-246 [arXiv:1811.03368 [gr-qc]].
- C. Barceló, R. Carballo-Rubio, L. J. Garay and G. Jannes, “Do transient white holes have a place in Nature?”, J. Phys. Conf. Ser. 600 (2015) no.1, 012033 doi:10.1088/1742-6596/600/1/012033
- S. D. H. Hsu, “White holes and eternal black holes”, Class. Quant. Grav. 29 (2012), 015004 doi:10.1088/0264-9381/29/1/015004 [arXiv:1007.2934 [gr-qc]].
- K. Lake and M. Abdelqader, “More on McVittie’s Legacy: A Schwarzschild - de Sitter black and white hole embedded in an asymptotically ΛΛ\Lambdaroman_ΛCDM cosmology”, Phys. Rev. D 84 (2011), 044045 doi:10.1103/PhysRevD.84.044045 [arXiv:1106.3666 [gr-qc]].
- Y. Kedem, E. J. Bergholtz and F. Wilczek, “Black and White Holes at Material Junctions”, Phys. Rev. Res. 2 (2020) no.4, 043285 doi:10.1103/PhysRevResearch.2.043285 [arXiv:2001.02625 [cond-mat.mes-hall]].
- G. E. Volovik, “The Hydraulic jump as a white hole”, JETP Lett. 82 (2005), 624-627 doi:10.1134/1.2166908 [arXiv:physics/0508215 [physics]].
- R. Gomez, S. Husa, L. Lehner and J. Winicour, “Gravitational waves from a fissioning white hole”, Phys. Rev. D 66 (2002), 064019 doi:10.1103/PhysRevD.66.064019 [arXiv:gr-qc/0205038 [gr-qc]].
- A. Retter and S. Heller, “The Revival of White Holes as Small Bangs”, New Astron. 17 (2012), 73-75 doi:10.1016/j.newast.2011.07.003 [arXiv:1105.2776 [physics.gen-ph]].
- L. J. Garay, C. Barceló, R. Carballo-Rubio and G. Jannes, “Do stars die too long?”, doi:10.1142/9789813226609_0174
- N. T. Bishop and A. S. Kubeka, “Quasi-Normal Modes of a Schwarzschild White Hole”, Phys. Rev. D 80 (2009), 064011 doi:10.1103/PhysRevD.80.064011 [arXiv:0907.1882 [gr-qc]].
- G. Jannes and G. Rousseaux, “The circular jump as a hydrodynamic white hole”, [arXiv:1203.6505 [gr-qc]].
- P. Hajicek and C. Kiefer, “Singularity avoidance by collapsing shells in quantum gravity”, Int. J. Mod. Phys. D 10 (2001), 775-780 doi:10.1142/S0218271801001578 [arXiv:gr-qc/0107102 [gr-qc]].
- P. Hajicek, “Unitary dynamics of spherical null gravitating shells”, Nucl. Phys. B 603 (2001), 555-577 \do:10.1016/S0550-3213(01)00140-7 [arXiv:hep-th/0007005 [hep-th]].
- H. M. Haggard and C. Rovelli, “Quantum-gravity effects outside the horizon spark black to white hole tunneling”, Phys. Rev. D 92 (2015) no.10, 104020 doi:10.1103/PhysRevD.92.104020 [arXiv:1407.0989 [gr-qc]].
- E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M. Haggard and C. Rovelli, “White Holes as Remnants: A Surprising Scenario for the End of a Black Hole”, Class. Quant. Grav. 35 (2018) no.22, 225003 doi:10.1088/1361-6382/aae550 [arXiv:1802.04264 [gr-qc]].
- J. Olmedo, S. Saini and P. Singh, “From black holes to white holes: a quantum gravitational, symmetric bounce”, Class. Quant. Grav. 34 (2017) no.22, 225011 doi:10.1088/1361-6382/aa8da8 [arXiv:1707.07333 [gr-qc]].
- C. Barceló, R. Carballo-Rubio, L. J. Garay and G. Jannes, “The lifetime problem of evaporating black holes: mutiny or resignation”, Class. Quant. Grav. 32 (2015) no.3, 035012 doi:10.1088/0264-9381/32/3/035012 [arXiv:1409.1501 [gr-qc]].
- T. De Lorenzo and A. Perez, “Improved Black Hole Fireworks: Asymmetric Black-Hole-to-White-Hole Tunneling Scenario”, Phys. Rev. D 93 (2016) no.12, 124018 doi:10.1103/PhysRevD.93.124018 [arXiv:1512.04566 [gr-qc]].
- N. Bodendorfer, F. M. Mele and J. Münch, “Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition”, Class. Quant. Grav. 38 (2021) no.9, 095002 doi:10.1088/1361-6382/abe05d [arXiv:1912.00774 [gr-qc]].
- C. Barceló, R. Carballo-Rubio and L. J. Garay, “Mutiny at the white-hole district”, Int. J. Mod. Phys. D 23 (2014) no.12, 1442022 doi:10.1142/S021827181442022X [arXiv:1407.1391 [gr-qc]].
- C. Barceló, R. Carballo-Rubio and L. J. Garay, “Black holes turn white fast, otherwise stay black: no half measures”, JHEP 01 (2016), 157 doi:10.1007/JHEP01(2016)157 [arXiv:1511.00633 [gr-qc]].
- J. Ben Achour, S. Brahma, S. Mukohyama and J. P. Uzan, “Towards consistent black-to-white hole bounces from matter collapse”, JCAP 09 (2020), 020 doi:10.1088/1475-7516/2020/09/020 [arXiv:2004.12977 [gr-qc]].
- C. Barceló, R. Carballo-Rubio and L. J. Garay, “Exponential fading to white of black holes in quantum gravity”, Class. Quant. Grav. 34 (2017) no.10, 105007 doi:10.1088/1361-6382/aa6962 [arXiv:1607.03480 [gr-qc]].
- M. Christodoulou and F. D’Ambrosio, “Characteristic Time Scales for the Geometry Transition of a Black Hole to a White Hole from Spinfoams”, [arXiv:1801.03027 [gr-qc]].
- P. Martin-Dussaud and C. Rovelli, “Evaporating black-to-white hole”, Class. Quant. Grav. 36 (2019) no.24, 245002 doi:10.1088/1361-6382/ab5097 [arXiv:1905.07251 [gr-qc]].
- A. Maciel, D. C. Guariento and C. Molina, “Cosmological black holes and white holes with time-dependent mass”, Phys. Rev. D 91 (2015) no.8, 084043 doi:10.1103/PhysRevD.91.084043 [arXiv:1502.01003 [gr-qc]].
- S. Brahma and D. h. Yeom, “Effective black-to-white hole bounces: The cost of surgery”, Class. Quant. Grav. 35 (2018) no.20, 205007 doi:10.1088/1361-6382/aae1df [arXiv:1804.02821 [gr-qc]].
- J. M. Bardeen, “Models for the nonsingular transition of an evaporating black hole into a white hole”, [arXiv:1811.06683 [gr-qc]].
- H. M. Haggard and C. Rovelli, “Black to white hole tunneling: An exact classical solution”, Int. J. Mod. Phys. A 30 (2015) no.28n29, 1545015 doi:10.1142/S0217751X15450153
- A. Rignon-Bret and C. Rovelli, “Black to white transition of a charged black hole”, Phys. Rev. D 105 (2022) no.8, 086003 doi:10.1103/PhysRevD.105.086003 [arXiv:2108.12823 [gr-qc]].
- M. Han, C. Rovelli and F. Soltani, “Geometry of the black-to-white hole transition within a single asymptotic region”, Phys. Rev. D 107 (2023) no.6, 064011 doi:10.1103/PhysRevD.107.064011 [arXiv:2302.03872 [gr-qc]].
- D. K. Hong, W. C. Lin and D. h. Yeom, “Trouble with geodesics in black-to-white hole bouncing scenarios”, Phys. Rev. D 106 (2022) no.10, 104011 doi:10.1103/PhysRevD.106.104011 [arXiv:2207.03183 [gr-qc]].
- J. M. Bardeen, “Black holes to white holes II: quasi-classical scenarios for white hole evolution”, [arXiv:2007.00190 [gr-qc]].
- S. Jalalzadeh, “Quantum black hole–white hole entangled states”, Phys. Lett. B 829 (2022), 137058 doi:10.1016/j.physletb.2022.137058 [arXiv:2203.09968 [gr-qc]].
- A. A. Starobinsky, “Quantum Effects in Cosmology and Black and White Hole Physics”, MG1 Conference, Trieste, Italy 1975.
- G. E. Volovik, “From black hole to white hole via the intermediate static state”, Mod. Phys. Lett. A 36 (2021) no.17, 2150117 doi:10.1142/S0217732321501170 [arXiv:2103.10954 [physics.gen-ph]].
- O. Sarbach and M. Tiglio, “Gauge invariant perturbations of Schwarzschild black holes in horizon penetrating coordinates”, Phys. Rev. D 64 (2001), 084016 doi:10.1103/PhysRevD.64.084016 [arXiv:gr-qc/0104061 [gr-qc]].
- M. Campanelli, G. Khanna, P. Laguna, J. Pullin and M. P. Ryan, “Perturbations of the Kerr space-time in horizon penetrating coordinates”, Class. Quant. Grav. 18 (2001), 1543-1554 doi:10.1088/0264-9381/18/8/310 [arXiv:gr-qc/0010034 [gr-qc]].
- M. K. Bhattacharyya, D. Hilditch, K. Rajesh Nayak, H. R. Rüter and B. Brügmann, “Analytical and numerical treatment of perturbed black holes in horizon-penetrating coordinates”, Phys. Rev. D 102 (2020) no.2, 024039 doi:10.1103/PhysRevD.102.024039 [arXiv:2004.02558 [gr-qc]].
- C. Cherubini, S. Filippi, A. Loppini, R. Moradi, R. Ruffini, Y. Wang and S. S. Xue, “Perfect relativistic magnetohydrodynamics around black holes in horizon penetrating coordinates”, Phys. Rev. D 97 (2018) no.6, 064038 doi:10.1103/PhysRevD.97.064038
- P. Boonserm, T. Ngampitipan and M. Visser, “Near-horizon geodesics for astrophysical and idealised black holes: Coordinate velocity and coordinate acceleration”, Universe 4 (2018) no.6, 68 doi:10.3390/universe4060068 [arXiv:1710.06139 [gr-qc]].
- C. Cherubini, S. Filippi, A. Loppini, R. Ruffini, R. Moradi, Y. Wang and S. S. Xue, “On Kerr black hole perfect MHD processes in Doran coordinates”, Proceedings of the MG16 Conference, Rome, 5-9 July 2021, (World Scientific, Singapore), pp 4387-4392, doi:10.1142/9789811269776_0369
- C. Barceló and M. Visser, “Twilight for the energy conditions?”, Int. J. Mod. Phys. D 11 (2002), 1553-1560 doi:10.1142/S0218271802002888 [arXiv:gr-qc/0205066 [gr-qc]].
- E. Curiel, “A Primer on Energy Conditions”, Einstein Stud. 13 (2017), 43-104 doi:10.1007/978-1-4939-3210-8_3 [arXiv:1405.0403 [physics.hist-ph]].
- E. A. Kontou and K. Sanders, “Energy conditions in general relativity and quantum field theory”, Class. Quant. Grav. 37 (2020) no.19, 193001 doi:10.1088/1361-6382/ab8fcf [arXiv:2003.01815 [gr-qc]].
- M. Visser, “Gravitational vacuum polarization. 1: Energy conditions in the Hartle-Hawking vacuum”, Phys. Rev. D 54 (1996), 5103-5115 doi:10.1103/PhysRevD.54.5103 [arXiv:gr-qc/9604007 [gr-qc]].
- M. Visser, “Gravitational vacuum polarization. 2: Energy conditions in the Boulware vacuum”, Phys. Rev. D 54 (1996), 5116-5122 doi:10.1103/PhysRevD.54.5116 [arXiv:gr-qc/9604008 [gr-qc]].
- M. Visser, “Gravitational vacuum polarization. 3: Energy conditions in the (1+1) Schwarzschild space-time”, Phys. Rev. D 54 (1996), 5123-5128 doi:10.1103/PhysRevD.54.5123 [arXiv:gr-qc/9604009 [gr-qc]].
- M. Visser, “Gravitational vacuum polarization. 4: Energy conditions in the Unruh vacuum”, Phys. Rev. D 56 (1997), 936-952 doi:10.1103/PhysRevD.56.936 [arXiv:gr-qc/9703001 [gr-qc]].
- M. Visser, “Energy conditions and galaxy formation”, MG8 Conference, Jerusalem, June 1997. [arXiv:gr-qc/9710010 [gr-qc]].
- D. Hochberg and M. Visser, “Dynamic wormholes, anti-trapped surfaces, and energy conditions”, Phys. Rev. D 58 (1998), 044021 doi:10.1103/PhysRevD.58.044021 [arXiv:gr-qc/9802046 [gr-qc]].
- F. S. N. Lobo, M. E. Rodrigues, M. V. de Sousa Silva, A. Simpson and M. Visser, “Novel black-bounce spacetimes: wormholes, regularity, energy conditions, and causal structure”, Phys. Rev. D 103 (2021) no.8, 084052 doi:10.1103/PhysRevD.103.084052 [arXiv:2009.12057 [gr-qc]].
- J. Santiago, S. Schuster and M. Visser, “Tractor Beams, Pressor Beams and Stressor Beams in General Relativity”, Universe 7 (2021) no.8, 271 doi:10.3390/universe7080271 [arXiv:2106.05002 [gr-qc]].
- M. Visser, J. Santiago and S. Schuster, “Tractor beams, pressor beams, and stressor beams within the context of general relativity”, MG16, Rome, July 2021. doi:10.1142/9789811269776_0063 [arXiv:2110.14926 [gr-qc]].
- R. M. Wald and U. Yurtsever, “General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time”, Phys. Rev. D 44 (1991), 403-416 doi:10.1103/PhysRevD.44.403
- E. E. Flanagan and R. M. Wald, “Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D 54 (1996), 6233-6283 doi:10.1103/PhysRevD.54.6233 [arXiv:gr-qc/9602052 [gr-qc]].
- M. Visser, “Scale anomalies imply violation of the averaged null energy condition”, Phys. Lett. B 349 (1995), 443-447 doi:10.1016/0370-2693(95)00303-3 [arXiv:gr-qc/9409043 [gr-qc]].
- L. H. Ford and T. A. Roman, “Averaged energy conditions and quantum inequalities”, Phys. Rev. D 51 (1995), 4277-4286 doi:10.1103/PhysRevD.51.4277 [arXiv:gr-qc/9410043 [gr-qc]].
- M. Visser, “Efficient Computation of Null Affine Parameters”, Universe 9 (2023) no.12, 521 doi:10.3390/universe9120521 [arXiv:2211.07835 [gr-qc]].
- G. ’t Hooft, “Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle”, Phys. Rev. D 14 (1976), 3432-3450 [erratum: Phys. Rev. D 18 (1978), 2199] doi:10.1103/PhysRevD.14.3432
- C. G. Callan, Jr., R. F. Dashen and D. J. Gross, “The Structure of the Gauge Theory Vacuum”, Phys. Lett. B 63 (1976), 334-340 doi:10.1016/0370-2693(76)90277-X
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons”, Phys. Rev. Lett. 38 (1977), 1440-1443 doi:10.1103/PhysRevLett.38.1440
- F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons”, Phys. Rev. Lett. 40 (1978), 279-282 doi:10.1103/PhysRevLett.40.279
- M. Visser, “Physical wavelets: Lorentz covariant, singularity free, finite energy, zero action, localized solutions to the wave equation”, Phys. Lett. A 315 (2003), 219-224 doi:10.1016/S0375-9601(03)01051-X [arXiv:hep-th/0304081 [hep-th]].
- P. O. Mazur and E. Mottola, “Gravitational vacuum condensate stars”, Proc. Nat. Acad. Sci. 101 (2004), 9545-9550 doi:10.1073/pnas.0402717101 [arXiv:gr-qc/0407075 [gr-qc]].
- P. O. Mazur and E. Mottola, “Gravitational Condensate Stars: An Alternative to Black Holes”, Universe 9 (2023) no.2, 88 doi:10.3390/universe9020088 [arXiv:gr-qc/0109035 [gr-qc]].
- P. O. Mazur and E. Mottola, “Weyl cohomology and the effective action for conformal anomalies”, Phys. Rev. D 64 (2001), 104022 doi:10.1103/PhysRevD.64.104022 [arXiv:hep-th/0106151 [hep-th]].
- M. Visser and D. L. Wiltshire, “Stable gravastars: An Alternative to black holes?”, Class. Quant. Grav. 21 (2004), 1135-1152 doi:10.1088/0264-9381/21/4/027 [arXiv:gr-qc/0310107 [gr-qc]].
- C. Cattoen, T. Faber and M. Visser, “Gravastars must have anisotropic pressures”, Class. Quant. Grav. 22 (2005), 4189-4202 doi:10.1088/0264-9381/22/20/002 [arXiv:gr-qc/0505137 [gr-qc]].
- C. B. M. H. Chirenti and L. Rezzolla, “How to tell a gravastar from a black hole”, Class. Quant. Grav. 24 (2007), 4191-4206 doi:10.1088/0264-9381/24/16/013 [arXiv:0706.1513 [gr-qc]].
- B. M. N. Carter, “Stable gravastars with generalised exteriors”, Class. Quant. Grav. 22 (2005), 4551-4562 doi:10.1088/0264-9381/22/21/007 [arXiv:gr-qc/0509087 [gr-qc]].
- C. B. M. H. Chirenti and L. Rezzolla, “On the ergoregion instability in rotating gravastars”, Phys. Rev. D 78 (2008), 084011 doi:10.1103/PhysRevD.78.084011 [arXiv:0808.4080 [gr-qc]].
- P. Martín-Moruno, N. Montelongo-García, F. S. N. Lobo and M. Visser, “Generic thin-shell gravastars”, JCAP 03 (2012), 034 doi:10.1088/1475-7516/2012/03/034 [arXiv:1112.5253 [gr-qc]].
- F. S. N. Lobo, P. Martín-Moruno, N. Montelongo-García and M. Visser, “Novel stability approach of thin-shell gravastars”, doi:10.1142/9789813226609_0221 [arXiv:1512.07659 [gr-qc]].
- F. S. N. Lobo, P. Martín-Moruno, N. Montelongo-García and M. Visser, “Linearised stability analysis of generic thin shells”, doi:10.1142/9789814623995_0321 [arXiv:1211.0605 [gr-qc]].
- R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, “A connection between regular black holes and horizonless ultracompact stars”, [arXiv:2211.05817 [gr-qc]].
- S. D. Mathur, “The Fuzzball proposal for black holes: An Elementary review,” Fortsch. Phys. 53 (2005), 793-827 doi:10.1002/prop.200410203 [arXiv:hep-th/0502050 [hep-th]].
- S. D. Mathur, “Fuzzballs and the information paradox: A Summary and conjectures,” [arXiv:0810.4525 [hep-th]].
- S. D. Mathur, “The Information paradox: A Pedagogical introduction,” Class. Quant. Grav. 26 (2009), 224001 doi:10.1088/0264-9381/26/22/224001 [arXiv:0909.1038 [hep-th]].
- K. Skenderis and M. Taylor, “The fuzzball proposal for black holes,” Phys. Rept. 467 (2008), 117-171 doi:10.1016/j.physrep.2008.08.001 [arXiv:0804.0552 [hep-th]].
- S. Raju and P. Shrivastava, “Critique of the fuzzball program,” Phys. Rev. D 99 (2019) no.6, 066009 doi:10.1103/PhysRevD.99.066009 [arXiv:1804.10616 [hep-th]].
- B. Guo, S. Hampton and S. D. Mathur, “Can we observe fuzzballs or firewalls?,” JHEP 07 (2018), 162 doi:10.1007/JHEP07(2018)162 [arXiv:1711.01617 [hep-th]].
- A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes: Complementarity or Firewalls?,” JHEP 02 (2013), 062 doi:10.1007/JHEP02(2013)062 [arXiv:1207.3123 [hep-th]].
- A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, “An Apologia for Firewalls,” JHEP 09 (2013), 018 doi:10.1007/JHEP09(2013)018 [arXiv:1304.6483 [hep-th]].
- L. Susskind, “The Transfer of Entanglement: The Case for Firewalls,” [arXiv:1210.2098 [hep-th]].
- L. Susskind, “Singularities, Firewalls, and Complementarity,” [arXiv:1208.3445 [hep-th]].
- M. Van Raamsdonk, “Evaporating Firewalls,” JHEP 11 (2014), 038 doi:10.1007/JHEP11(2014)038 [arXiv:1307.1796 [hep-th]].
- D. N. Page, “Excluding Black Hole Firewalls with Extreme Cosmic Censorship,” JCAP 06 (2014), 051 doi:10.1088/1475-7516/2014/06/051 [arXiv:1306.0562 [hep-th]].
- M. Saravani, N. Afshordi and R. B. Mann, “Empty black holes, firewalls, and the origin of Bekenstein–Hawking entropy,” Int. J. Mod. Phys. D 23 (2015) no.13, 1443007 doi:10.1142/S021827181443007X [arXiv:1212.4176 [hep-th]].
- T. Banks and W. Fischler, “Holographic Space-Time Does Not Predict Firewalls,” [arXiv:1208.4757 [hep-th]].
- P. Chen, Y. C. Ong, D. N. Page, M. Sasaki and D. h. Yeom, “Naked Black Hole Firewalls,” Phys. Rev. Lett. 116 (2016) no.16, 161304 doi:10.1103/PhysRevLett.116.161304 [arXiv:1511.05695 [hep-th]].
- K. Larjo, D. A. Lowe and L. Thorlacius, “Black holes without firewalls,” Phys. Rev. D 87 (2013) no.10, 104018 doi:10.1103/PhysRevD.87.104018 [arXiv:1211.4620 [hep-th]].
- S. D. Mathur and D. Turton, “The flaw in the firewall argument,” Nucl. Phys. B 884 (2014), 566-611 doi:10.1016/j.nuclphysb.2014.05.012 [arXiv:1306.5488 [hep-th]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.