Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs (2304.10344v2)

Published 20 Apr 2023 in math.OC, econ.GN, and q-fin.EC

Abstract: The socioeconomic impact of pollution naturally comes with uncertainty due to, e.g., current new technological developments in emissions' abatement or demographic changes. On top of that, the trend of the future costs of the environmental damage is unknown: Will global warming dominate or technological advancements prevail? The truth is that we do not know which scenario will be realised and the scientific debate is still open. This paper captures those two layers of uncertainty by developing a real-options-like model in which a decision maker aims at adopting a once-and-for-all costly reduction in the current emissions rate, when the stochastic dynamics of the socioeconomic costs of pollution are subject to Brownian shocks and the drift is an unobservable random variable. By keeping track of the actual evolution of the costs, the decision maker is able to learn the unknown drift and to form a posterior dynamic belief of its true value. The resulting decision maker's timing problem boils down to a truly two-dimensional optimal stopping problem which we address via probabilistic free-boundary methods and a state-space transformation. We completely characterise the solution by showing that the optimal timing for implementing the emissions reduction policy is the first time that the learning process has become ``decisive'' enough; that is, when it exceeds a time-dependent percentage. This is given in terms of an endogenously determined threshold function, which solves uniquely a nonlinear integral equation. We numerically illustrate our results, discuss the implications of the optimal policy and also perform comparative statics to understand the role of the relevant model's parameters in the optimal policy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.